| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme31.o |
|- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) |
| 2 |
|
cdleme31.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
| 3 |
|
cdleme31.c |
|- C = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) |
| 4 |
1 2 3
|
cdleme31fv |
|- ( X e. B -> ( F ` X ) = if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) ) |
| 5 |
|
iftrue |
|- ( ( P =/= Q /\ -. X .<_ W ) -> if ( ( P =/= Q /\ -. X .<_ W ) , C , X ) = C ) |
| 6 |
4 5
|
sylan9eq |
|- ( ( X e. B /\ ( P =/= Q /\ -. X .<_ W ) ) -> ( F ` X ) = C ) |