| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme31fv2.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
| 2 |
|
breq1 |
|- ( x = X -> ( x .<_ W <-> X .<_ W ) ) |
| 3 |
2
|
notbid |
|- ( x = X -> ( -. x .<_ W <-> -. X .<_ W ) ) |
| 4 |
3
|
anbi2d |
|- ( x = X -> ( ( P =/= Q /\ -. x .<_ W ) <-> ( P =/= Q /\ -. X .<_ W ) ) ) |
| 5 |
4
|
notbid |
|- ( x = X -> ( -. ( P =/= Q /\ -. x .<_ W ) <-> -. ( P =/= Q /\ -. X .<_ W ) ) ) |
| 6 |
5
|
biimparc |
|- ( ( -. ( P =/= Q /\ -. X .<_ W ) /\ x = X ) -> -. ( P =/= Q /\ -. x .<_ W ) ) |
| 7 |
6
|
adantll |
|- ( ( ( X e. B /\ -. ( P =/= Q /\ -. X .<_ W ) ) /\ x = X ) -> -. ( P =/= Q /\ -. x .<_ W ) ) |
| 8 |
7
|
iffalsed |
|- ( ( ( X e. B /\ -. ( P =/= Q /\ -. X .<_ W ) ) /\ x = X ) -> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) = x ) |
| 9 |
|
simpr |
|- ( ( ( X e. B /\ -. ( P =/= Q /\ -. X .<_ W ) ) /\ x = X ) -> x = X ) |
| 10 |
8 9
|
eqtrd |
|- ( ( ( X e. B /\ -. ( P =/= Q /\ -. X .<_ W ) ) /\ x = X ) -> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) = X ) |
| 11 |
|
simpl |
|- ( ( X e. B /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> X e. B ) |
| 12 |
1 10 11 11
|
fvmptd2 |
|- ( ( X e. B /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> ( F ` X ) = X ) |