Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31sc.c |
|- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
2 |
|
cdleme31sc.x |
|- X = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
3 |
|
nfcvd |
|- ( R e. A -> F/_ s ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
4 |
|
oveq1 |
|- ( s = R -> ( s .\/ U ) = ( R .\/ U ) ) |
5 |
|
oveq2 |
|- ( s = R -> ( P .\/ s ) = ( P .\/ R ) ) |
6 |
5
|
oveq1d |
|- ( s = R -> ( ( P .\/ s ) ./\ W ) = ( ( P .\/ R ) ./\ W ) ) |
7 |
6
|
oveq2d |
|- ( s = R -> ( Q .\/ ( ( P .\/ s ) ./\ W ) ) = ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
8 |
4 7
|
oveq12d |
|- ( s = R -> ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
9 |
3 8
|
csbiegf |
|- ( R e. A -> [_ R / s ]_ ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) ) |
10 |
1
|
csbeq2i |
|- [_ R / s ]_ C = [_ R / s ]_ ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
11 |
9 10 2
|
3eqtr4g |
|- ( R e. A -> [_ R / s ]_ C = X ) |