| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme31sdn.c | 
							 |-  C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme31sdn.d | 
							 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme31sdn.n | 
							 |-  N = if ( s .<_ ( P .\/ Q ) , I , C )  | 
						
						
							| 4 | 
							
								
							 | 
							biid | 
							 |-  ( s .<_ ( P .\/ Q ) <-> s .<_ ( P .\/ Q ) )  | 
						
						
							| 5 | 
							
								2 1
							 | 
							cdleme31sc | 
							 |-  ( s e. _V -> [_ s / t ]_ D = C )  | 
						
						
							| 6 | 
							
								5
							 | 
							elv | 
							 |-  [_ s / t ]_ D = C  | 
						
						
							| 7 | 
							
								4 6
							 | 
							ifbieq2i | 
							 |-  if ( s .<_ ( P .\/ Q ) , I , [_ s / t ]_ D ) = if ( s .<_ ( P .\/ Q ) , I , C )  | 
						
						
							| 8 | 
							
								3 7
							 | 
							eqtr4i | 
							 |-  N = if ( s .<_ ( P .\/ Q ) , I , [_ s / t ]_ D )  |