Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31sn.n |
|- N = if ( s .<_ ( P .\/ Q ) , I , D ) |
2 |
|
cdleme31sn.c |
|- C = if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) |
3 |
|
nfv |
|- F/ s R .<_ ( P .\/ Q ) |
4 |
|
nfcsb1v |
|- F/_ s [_ R / s ]_ I |
5 |
|
nfcsb1v |
|- F/_ s [_ R / s ]_ D |
6 |
3 4 5
|
nfif |
|- F/_ s if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) |
7 |
6
|
a1i |
|- ( R e. A -> F/_ s if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) ) |
8 |
|
breq1 |
|- ( s = R -> ( s .<_ ( P .\/ Q ) <-> R .<_ ( P .\/ Q ) ) ) |
9 |
|
csbeq1a |
|- ( s = R -> I = [_ R / s ]_ I ) |
10 |
|
csbeq1a |
|- ( s = R -> D = [_ R / s ]_ D ) |
11 |
8 9 10
|
ifbieq12d |
|- ( s = R -> if ( s .<_ ( P .\/ Q ) , I , D ) = if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) ) |
12 |
7 11
|
csbiegf |
|- ( R e. A -> [_ R / s ]_ if ( s .<_ ( P .\/ Q ) , I , D ) = if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) ) |
13 |
1
|
csbeq2i |
|- [_ R / s ]_ N = [_ R / s ]_ if ( s .<_ ( P .\/ Q ) , I , D ) |
14 |
12 13 2
|
3eqtr4g |
|- ( R e. A -> [_ R / s ]_ N = C ) |