| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme32sn2.d | 
							 |-  D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme31sn2.n | 
							 |-  N = if ( s .<_ ( P .\/ Q ) , I , D )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme31sn2.c | 
							 |-  C = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							eqid | 
							 |-  if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) = if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D )  | 
						
						
							| 5 | 
							
								2 4
							 | 
							cdleme31sn | 
							 |-  ( R e. A -> [_ R / s ]_ N = if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							 |-  ( ( R e. A /\ -. R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N = if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) )  | 
						
						
							| 7 | 
							
								
							 | 
							iffalse | 
							 |-  ( -. R .<_ ( P .\/ Q ) -> if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) = [_ R / s ]_ D )  | 
						
						
							| 8 | 
							
								1
							 | 
							csbeq2i | 
							 |-  [_ R / s ]_ D = [_ R / s ]_ ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							eqtrdi | 
							 |-  ( -. R .<_ ( P .\/ Q ) -> if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) = [_ R / s ]_ ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							nfcvd | 
							 |-  ( R e. A -> F/_ s ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 11 | 
							
								
							 | 
							oveq1 | 
							 |-  ( s = R -> ( s .\/ U ) = ( R .\/ U ) )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq2 | 
							 |-  ( s = R -> ( P .\/ s ) = ( P .\/ R ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq1d | 
							 |-  ( s = R -> ( ( P .\/ s ) ./\ W ) = ( ( P .\/ R ) ./\ W ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							oveq2d | 
							 |-  ( s = R -> ( Q .\/ ( ( P .\/ s ) ./\ W ) ) = ( Q .\/ ( ( P .\/ R ) ./\ W ) ) )  | 
						
						
							| 15 | 
							
								11 14
							 | 
							oveq12d | 
							 |-  ( s = R -> ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 16 | 
							
								10 15
							 | 
							csbiegf | 
							 |-  ( R e. A -> [_ R / s ]_ ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 17 | 
							
								9 16
							 | 
							sylan9eqr | 
							 |-  ( ( R e. A /\ -. R .<_ ( P .\/ Q ) ) -> if ( R .<_ ( P .\/ Q ) , [_ R / s ]_ I , [_ R / s ]_ D ) = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 18 | 
							
								6 17
							 | 
							eqtrd | 
							 |-  ( ( R e. A /\ -. R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 19 | 
							
								18 3
							 | 
							eqtr4di | 
							 |-  ( ( R e. A /\ -. R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N = C )  |