| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme31snd.d | 
							 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme31snd.n | 
							 |-  N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme31snd.e | 
							 |-  E = ( ( O .\/ U ) ./\ ( Q .\/ ( ( P .\/ O ) ./\ W ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme31snd.o | 
							 |-  O = ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) )  | 
						
						
							| 5 | 
							
								
							 | 
							csbnestgw | 
							 |-  ( S e. A -> [_ S / v ]_ [_ N / t ]_ D = [_ [_ S / v ]_ N / t ]_ D )  | 
						
						
							| 6 | 
							
								2 4
							 | 
							cdleme31sc | 
							 |-  ( S e. A -> [_ S / v ]_ N = O )  | 
						
						
							| 7 | 
							
								6
							 | 
							csbeq1d | 
							 |-  ( S e. A -> [_ [_ S / v ]_ N / t ]_ D = [_ O / t ]_ D )  | 
						
						
							| 8 | 
							
								4
							 | 
							ovexi | 
							 |-  O e. _V  | 
						
						
							| 9 | 
							
								1 3
							 | 
							cdleme31sc | 
							 |-  ( O e. _V -> [_ O / t ]_ D = E )  | 
						
						
							| 10 | 
							
								8 9
							 | 
							ax-mp | 
							 |-  [_ O / t ]_ D = E  | 
						
						
							| 11 | 
							
								7 10
							 | 
							eqtrdi | 
							 |-  ( S e. A -> [_ [_ S / v ]_ N / t ]_ D = E )  | 
						
						
							| 12 | 
							
								5 11
							 | 
							eqtrd | 
							 |-  ( S e. A -> [_ S / v ]_ [_ N / t ]_ D = E )  |