Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme31snd.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
2 |
|
cdleme31snd.n |
|- N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) |
3 |
|
cdleme31snd.e |
|- E = ( ( O .\/ U ) ./\ ( Q .\/ ( ( P .\/ O ) ./\ W ) ) ) |
4 |
|
cdleme31snd.o |
|- O = ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) |
5 |
|
csbnestgw |
|- ( S e. A -> [_ S / v ]_ [_ N / t ]_ D = [_ [_ S / v ]_ N / t ]_ D ) |
6 |
2 4
|
cdleme31sc |
|- ( S e. A -> [_ S / v ]_ N = O ) |
7 |
6
|
csbeq1d |
|- ( S e. A -> [_ [_ S / v ]_ N / t ]_ D = [_ O / t ]_ D ) |
8 |
4
|
ovexi |
|- O e. _V |
9 |
1 3
|
cdleme31sc |
|- ( O e. _V -> [_ O / t ]_ D = E ) |
10 |
8 9
|
ax-mp |
|- [_ O / t ]_ D = E |
11 |
7 10
|
eqtrdi |
|- ( S e. A -> [_ [_ S / v ]_ N / t ]_ D = E ) |
12 |
5 11
|
eqtrd |
|- ( S e. A -> [_ S / v ]_ [_ N / t ]_ D = E ) |