| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme31so.o | 
							 |-  O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme31so.c | 
							 |-  C = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							nfcvd | 
							 |-  ( X e. B -> F/_ x ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = X -> ( x ./\ W ) = ( X ./\ W ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							oveq2d | 
							 |-  ( x = X -> ( s .\/ ( x ./\ W ) ) = ( s .\/ ( X ./\ W ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							id | 
							 |-  ( x = X -> x = X )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							eqeq12d | 
							 |-  ( x = X -> ( ( s .\/ ( x ./\ W ) ) = x <-> ( s .\/ ( X ./\ W ) ) = X ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							anbi2d | 
							 |-  ( x = X -> ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) <-> ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) )  | 
						
						
							| 9 | 
							
								4
							 | 
							oveq2d | 
							 |-  ( x = X -> ( N .\/ ( x ./\ W ) ) = ( N .\/ ( X ./\ W ) ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							eqeq2d | 
							 |-  ( x = X -> ( z = ( N .\/ ( x ./\ W ) ) <-> z = ( N .\/ ( X ./\ W ) ) ) )  | 
						
						
							| 11 | 
							
								8 10
							 | 
							imbi12d | 
							 |-  ( x = X -> ( ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) <-> ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							ralbidv | 
							 |-  ( x = X -> ( A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) <-> A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							riotabidv | 
							 |-  ( x = X -> ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) )  | 
						
						
							| 14 | 
							
								3 13
							 | 
							csbiegf | 
							 |-  ( X e. B -> [_ X / x ]_ ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) )  | 
						
						
							| 15 | 
							
								1
							 | 
							csbeq2i | 
							 |-  [_ X / x ]_ O = [_ X / x ]_ ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) )  | 
						
						
							| 16 | 
							
								14 15 2
							 | 
							3eqtr4g | 
							 |-  ( X e. B -> [_ X / x ]_ O = C )  |