Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme32.b |
|- B = ( Base ` K ) |
2 |
|
cdleme32.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme32.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme32.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme32.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme32.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme32.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme32.c |
|- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme32.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
10 |
|
cdleme32.e |
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) |
11 |
|
cdleme32.i |
|- I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) |
12 |
|
cdleme32.n |
|- N = if ( s .<_ ( P .\/ Q ) , I , C ) |
13 |
|
cdleme32.o |
|- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) |
14 |
|
cdleme32.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
15 |
1
|
fvexi |
|- B e. _V |
16 |
|
anass |
|- ( ( ( s e. A /\ -. s .<_ W ) /\ ( s .\/ ( X ./\ W ) ) = X ) <-> ( s e. A /\ ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) ) |
17 |
|
eqid |
|- ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) |
18 |
13 14 17
|
cdleme31fv1 |
|- ( ( X e. B /\ ( P =/= Q /\ -. X .<_ W ) ) -> ( F ` X ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) ) |
19 |
18
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ ( P =/= Q /\ -. X .<_ W ) ) ) -> ( F ` X ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> z = ( N .\/ ( X ./\ W ) ) ) ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
cdleme32fvcl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) -> ( F ` X ) e. B ) |
21 |
20
|
adantrr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ ( P =/= Q /\ -. X .<_ W ) ) ) -> ( F ` X ) e. B ) |
22 |
19 21
|
riotasvd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ ( P =/= Q /\ -. X .<_ W ) ) ) /\ B e. _V ) -> ( ( s e. A /\ ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) -> ( F ` X ) = ( N .\/ ( X ./\ W ) ) ) ) |
23 |
16 22
|
syl5bi |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ ( P =/= Q /\ -. X .<_ W ) ) ) /\ B e. _V ) -> ( ( ( s e. A /\ -. s .<_ W ) /\ ( s .\/ ( X ./\ W ) ) = X ) -> ( F ` X ) = ( N .\/ ( X ./\ W ) ) ) ) |
24 |
15 23
|
mpan2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ ( P =/= Q /\ -. X .<_ W ) ) ) -> ( ( ( s e. A /\ -. s .<_ W ) /\ ( s .\/ ( X ./\ W ) ) = X ) -> ( F ` X ) = ( N .\/ ( X ./\ W ) ) ) ) |
25 |
24
|
3impia |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ ( s .\/ ( X ./\ W ) ) = X ) ) -> ( F ` X ) = ( N .\/ ( X ./\ W ) ) ) |