Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme32.b |
|- B = ( Base ` K ) |
2 |
|
cdleme32.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme32.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme32.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme32.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme32.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme32.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme32.c |
|- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme32.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
10 |
|
cdleme32.e |
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) |
11 |
|
cdleme32.i |
|- I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) |
12 |
|
cdleme32.n |
|- N = if ( s .<_ ( P .\/ Q ) , I , C ) |
13 |
|
cdleme32.o |
|- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) |
14 |
|
cdleme32.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
15 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
simp21 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) -> X e. B ) |
17 |
|
simp23r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) -> -. X .<_ W ) |
18 |
1 2 3 4 5 6
|
lhpmcvr2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( X e. B /\ -. X .<_ W ) ) -> E. s e. A ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) |
19 |
15 16 17 18
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) -> E. s e. A ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) |
20 |
|
nfv |
|- F/ s ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) |
21 |
|
nfcv |
|- F/_ s B |
22 |
|
nfv |
|- F/ s ( P =/= Q /\ -. x .<_ W ) |
23 |
|
nfra1 |
|- F/ s A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) |
24 |
23 21
|
nfriota |
|- F/_ s ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) |
25 |
13 24
|
nfcxfr |
|- F/_ s O |
26 |
|
nfcv |
|- F/_ s x |
27 |
22 25 26
|
nfif |
|- F/_ s if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) |
28 |
21 27
|
nfmpt |
|- F/_ s ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
29 |
14 28
|
nfcxfr |
|- F/_ s F |
30 |
|
nfcv |
|- F/_ s X |
31 |
29 30
|
nffv |
|- F/_ s ( F ` X ) |
32 |
|
nfcv |
|- F/_ s .<_ |
33 |
|
nfcv |
|- F/_ s Y |
34 |
29 33
|
nffv |
|- F/_ s ( F ` Y ) |
35 |
31 32 34
|
nfbr |
|- F/ s ( F ` X ) .<_ ( F ` Y ) |
36 |
|
simpl1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) /\ ( s e. A /\ ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
37 |
|
simpl2 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) /\ ( s e. A /\ ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) ) -> ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) ) |
38 |
|
simprl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) /\ ( s e. A /\ ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) ) -> s e. A ) |
39 |
|
simprrl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) /\ ( s e. A /\ ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) ) -> -. s .<_ W ) |
40 |
38 39
|
jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) /\ ( s e. A /\ ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) ) -> ( s e. A /\ -. s .<_ W ) ) |
41 |
|
simprrr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) /\ ( s e. A /\ ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) ) -> ( s .\/ ( X ./\ W ) ) = X ) |
42 |
|
simpl3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) /\ ( s e. A /\ ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) ) -> X .<_ Y ) |
43 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
cdleme32c |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ ( s .\/ ( X ./\ W ) ) = X /\ X .<_ Y ) ) -> ( F ` X ) .<_ ( F ` Y ) ) |
44 |
36 37 40 41 42 43
|
syl113anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) /\ ( s e. A /\ ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) ) ) -> ( F ` X ) .<_ ( F ` Y ) ) |
45 |
44
|
exp32 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) -> ( s e. A -> ( ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> ( F ` X ) .<_ ( F ` Y ) ) ) ) |
46 |
20 35 45
|
rexlimd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) -> ( E. s e. A ( -. s .<_ W /\ ( s .\/ ( X ./\ W ) ) = X ) -> ( F ` X ) .<_ ( F ` Y ) ) ) |
47 |
19 46
|
mpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( X e. B /\ Y e. B /\ ( P =/= Q /\ -. X .<_ W ) ) /\ X .<_ Y ) -> ( F ` X ) .<_ ( F ` Y ) ) |