Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme32.b |
|- B = ( Base ` K ) |
2 |
|
cdleme32.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme32.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme32.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme32.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme32.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme32.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme32.c |
|- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme32.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
10 |
|
cdleme32.e |
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) |
11 |
|
cdleme32.i |
|- I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) |
12 |
|
cdleme32.n |
|- N = if ( s .<_ ( P .\/ Q ) , I , C ) |
13 |
|
cdleme32.o |
|- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) |
14 |
|
cdleme32.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
15 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> R e. A ) |
16 |
1 5
|
atbase |
|- ( R e. A -> R e. B ) |
17 |
15 16
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> R e. B ) |
18 |
|
eqid |
|- ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) |
19 |
13 18
|
cdleme31so |
|- ( R e. B -> [_ R / x ]_ O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
20 |
17 19
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> [_ R / x ]_ O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
21 |
|
simp1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
22 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> P =/= Q ) |
23 |
|
simp2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> ( R e. A /\ -. R .<_ W ) ) |
24 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme32snb |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> [_ R / s ]_ N e. B ) |
25 |
21 22 23 24
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> [_ R / s ]_ N e. B ) |
26 |
|
nfv |
|- F/ s -. R .<_ W |
27 |
|
nfcsb1v |
|- F/_ s [_ R / s ]_ N |
28 |
27
|
nfeq2 |
|- F/ s z = [_ R / s ]_ N |
29 |
26 28
|
nfim |
|- F/ s ( -. R .<_ W -> z = [_ R / s ]_ N ) |
30 |
|
breq1 |
|- ( s = R -> ( s .<_ W <-> R .<_ W ) ) |
31 |
30
|
notbid |
|- ( s = R -> ( -. s .<_ W <-> -. R .<_ W ) ) |
32 |
|
csbeq1a |
|- ( s = R -> N = [_ R / s ]_ N ) |
33 |
32
|
eqeq2d |
|- ( s = R -> ( z = N <-> z = [_ R / s ]_ N ) ) |
34 |
31 33
|
imbi12d |
|- ( s = R -> ( ( -. s .<_ W -> z = N ) <-> ( -. R .<_ W -> z = [_ R / s ]_ N ) ) ) |
35 |
34
|
ax-gen |
|- A. s ( s = R -> ( ( -. s .<_ W -> z = N ) <-> ( -. R .<_ W -> z = [_ R / s ]_ N ) ) ) |
36 |
|
ceqsralt |
|- ( ( F/ s ( -. R .<_ W -> z = [_ R / s ]_ N ) /\ A. s ( s = R -> ( ( -. s .<_ W -> z = N ) <-> ( -. R .<_ W -> z = [_ R / s ]_ N ) ) ) /\ R e. A ) -> ( A. s e. A ( s = R -> ( -. s .<_ W -> z = N ) ) <-> ( -. R .<_ W -> z = [_ R / s ]_ N ) ) ) |
37 |
29 35 36
|
mp3an12 |
|- ( R e. A -> ( A. s e. A ( s = R -> ( -. s .<_ W -> z = N ) ) <-> ( -. R .<_ W -> z = [_ R / s ]_ N ) ) ) |
38 |
37
|
adantr |
|- ( ( R e. A /\ -. R .<_ W ) -> ( A. s e. A ( s = R -> ( -. s .<_ W -> z = N ) ) <-> ( -. R .<_ W -> z = [_ R / s ]_ N ) ) ) |
39 |
38
|
3ad2ant2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> ( A. s e. A ( s = R -> ( -. s .<_ W -> z = N ) ) <-> ( -. R .<_ W -> z = [_ R / s ]_ N ) ) ) |
40 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> ( K e. HL /\ W e. H ) ) |
41 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
42 |
2 4 41 5 6
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R ./\ W ) = ( 0. ` K ) ) |
43 |
40 23 42
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> ( R ./\ W ) = ( 0. ` K ) ) |
44 |
43
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( R ./\ W ) = ( 0. ` K ) ) |
45 |
44
|
oveq2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( s .\/ ( R ./\ W ) ) = ( s .\/ ( 0. ` K ) ) ) |
46 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> K e. HL ) |
47 |
46
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> K e. HL ) |
48 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
49 |
47 48
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> K e. OL ) |
50 |
1 5
|
atbase |
|- ( s e. A -> s e. B ) |
51 |
50
|
ad2antrl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> s e. B ) |
52 |
1 3 41
|
olj01 |
|- ( ( K e. OL /\ s e. B ) -> ( s .\/ ( 0. ` K ) ) = s ) |
53 |
49 51 52
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( s .\/ ( 0. ` K ) ) = s ) |
54 |
45 53
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( s .\/ ( R ./\ W ) ) = s ) |
55 |
54
|
eqeq1d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( ( s .\/ ( R ./\ W ) ) = R <-> s = R ) ) |
56 |
44
|
oveq2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( N .\/ ( R ./\ W ) ) = ( N .\/ ( 0. ` K ) ) ) |
57 |
|
simpl11 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( K e. HL /\ W e. H ) ) |
58 |
|
simpl12 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( P e. A /\ -. P .<_ W ) ) |
59 |
|
simpl13 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
60 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( s e. A /\ -. s .<_ W ) ) |
61 |
|
simpl3 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> P =/= Q ) |
62 |
1 2 3 4 5 6 7 8 9 10 11 12
|
cdleme27cl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ P =/= Q ) ) -> N e. B ) |
63 |
57 58 59 60 61 62
|
syl122anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> N e. B ) |
64 |
1 3 41
|
olj01 |
|- ( ( K e. OL /\ N e. B ) -> ( N .\/ ( 0. ` K ) ) = N ) |
65 |
49 63 64
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( N .\/ ( 0. ` K ) ) = N ) |
66 |
56 65
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( N .\/ ( R ./\ W ) ) = N ) |
67 |
66
|
eqeq2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( z = ( N .\/ ( R ./\ W ) ) <-> z = N ) ) |
68 |
55 67
|
imbi12d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ ( s e. A /\ -. s .<_ W ) ) -> ( ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( s = R -> z = N ) ) ) |
69 |
68
|
expr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ s e. A ) -> ( -. s .<_ W -> ( ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( s = R -> z = N ) ) ) ) |
70 |
69
|
pm5.74d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ s e. A ) -> ( ( -. s .<_ W -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( -. s .<_ W -> ( s = R -> z = N ) ) ) ) |
71 |
|
impexp |
|- ( ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( -. s .<_ W -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
72 |
|
bi2.04 |
|- ( ( s = R -> ( -. s .<_ W -> z = N ) ) <-> ( -. s .<_ W -> ( s = R -> z = N ) ) ) |
73 |
70 71 72
|
3bitr4g |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ s e. A ) -> ( ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( s = R -> ( -. s .<_ W -> z = N ) ) ) ) |
74 |
73
|
ralbidva |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> ( A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> A. s e. A ( s = R -> ( -. s .<_ W -> z = N ) ) ) ) |
75 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> -. R .<_ W ) |
76 |
|
biimt |
|- ( -. R .<_ W -> ( z = [_ R / s ]_ N <-> ( -. R .<_ W -> z = [_ R / s ]_ N ) ) ) |
77 |
75 76
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> ( z = [_ R / s ]_ N <-> ( -. R .<_ W -> z = [_ R / s ]_ N ) ) ) |
78 |
39 74 77
|
3bitr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> ( A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> z = [_ R / s ]_ N ) ) |
79 |
78
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) /\ z e. B ) -> ( A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> z = [_ R / s ]_ N ) ) |
80 |
25 79
|
riota5 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) = [_ R / s ]_ N ) |
81 |
20 80
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> [_ R / x ]_ O = [_ R / s ]_ N ) |