Metamath Proof Explorer


Theorem cdleme32snaw

Description: Show that [_ R / s ]_ N is an atom not under W . (Contributed by NM, 6-Mar-2013)

Ref Expression
Hypotheses cdleme32.b
|- B = ( Base ` K )
cdleme32.l
|- .<_ = ( le ` K )
cdleme32.j
|- .\/ = ( join ` K )
cdleme32.m
|- ./\ = ( meet ` K )
cdleme32.a
|- A = ( Atoms ` K )
cdleme32.h
|- H = ( LHyp ` K )
cdleme32.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme32.c
|- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
cdleme32.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdleme32.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdleme32.i
|- I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) )
cdleme32.n
|- N = if ( s .<_ ( P .\/ Q ) , I , C )
Assertion cdleme32snaw
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) )

Proof

Step Hyp Ref Expression
1 cdleme32.b
 |-  B = ( Base ` K )
2 cdleme32.l
 |-  .<_ = ( le ` K )
3 cdleme32.j
 |-  .\/ = ( join ` K )
4 cdleme32.m
 |-  ./\ = ( meet ` K )
5 cdleme32.a
 |-  A = ( Atoms ` K )
6 cdleme32.h
 |-  H = ( LHyp ` K )
7 cdleme32.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdleme32.c
 |-  C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
9 cdleme32.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
10 cdleme32.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
11 cdleme32.i
 |-  I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) )
12 cdleme32.n
 |-  N = if ( s .<_ ( P .\/ Q ) , I , C )
13 eqid
 |-  ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) )
14 eqid
 |-  ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) ) ) ) = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) ) ) )
15 1 2 3 4 5 6 7 9 10 11 12 13 14 cdlemefs32sn1aw
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) )
16 15 3expa
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) ) /\ R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) )
17 1 2 3 4 5 6 7 8 12 cdlemefr32sn2aw
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) )
18 17 3expa
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) )
19 16 18 pm2.61dan
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) )