| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme35.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme35.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme35.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme35.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme35.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme35.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme35.f |
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
| 8 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. HL ) |
| 9 |
8
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. Lat ) |
| 10 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> Q e. A ) |
| 11 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 12 |
11 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 13 |
10 12
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> Q e. ( Base ` K ) ) |
| 14 |
|
simp2rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. A ) |
| 15 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) ) |
| 16 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 17 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P =/= Q ) |
| 18 |
1 2 3 4 5 6
|
cdleme0a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) |
| 19 |
15 16 10 17 18
|
syl112anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> U e. A ) |
| 20 |
11 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 21 |
8 14 19 20
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 22 |
11 1 2
|
latlej1 |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( R .\/ U ) e. ( Base ` K ) ) -> Q .<_ ( Q .\/ ( R .\/ U ) ) ) |
| 23 |
9 13 21 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> Q .<_ ( Q .\/ ( R .\/ U ) ) ) |
| 24 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P e. A ) |
| 25 |
11 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
| 26 |
24 25
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P e. ( Base ` K ) ) |
| 27 |
11 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 28 |
14 27
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. ( Base ` K ) ) |
| 29 |
11 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
| 30 |
9 26 28 29
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
| 31 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> W e. H ) |
| 32 |
11 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 33 |
31 32
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> W e. ( Base ` K ) ) |
| 34 |
11 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
| 35 |
9 30 33 34
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
| 36 |
11 2
|
latjcl |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( ( P .\/ R ) .\/ Q ) e. ( Base ` K ) ) |
| 37 |
9 30 13 36
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) .\/ Q ) e. ( Base ` K ) ) |
| 38 |
11 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) .<_ ( P .\/ R ) ) |
| 39 |
9 30 33 38
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ W ) .<_ ( P .\/ R ) ) |
| 40 |
11 1 2
|
latlej1 |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ R ) .<_ ( ( P .\/ R ) .\/ Q ) ) |
| 41 |
9 30 13 40
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ R ) .<_ ( ( P .\/ R ) .\/ Q ) ) |
| 42 |
11 1 9 35 30 37 39 41
|
lattrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ W ) .<_ ( ( P .\/ R ) .\/ Q ) ) |
| 43 |
6
|
oveq2i |
|- ( Q .\/ U ) = ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) |
| 44 |
11 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 45 |
8 24 10 44
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 46 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> Q .<_ ( P .\/ Q ) ) |
| 47 |
8 24 10 46
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> Q .<_ ( P .\/ Q ) ) |
| 48 |
11 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( Q e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ Q .<_ ( P .\/ Q ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) ) |
| 49 |
8 10 45 33 47 48
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) ) |
| 50 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
| 51 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
| 52 |
1 2 51 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q .\/ W ) = ( 1. ` K ) ) |
| 53 |
15 50 52
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q .\/ W ) = ( 1. ` K ) ) |
| 54 |
53
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( Q .\/ W ) ) = ( ( P .\/ Q ) ./\ ( 1. ` K ) ) ) |
| 55 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 56 |
8 55
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. OL ) |
| 57 |
11 3 51
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
| 58 |
56 45 57
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ Q ) ./\ ( 1. ` K ) ) = ( P .\/ Q ) ) |
| 59 |
49 54 58
|
3eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q .\/ ( ( P .\/ Q ) ./\ W ) ) = ( P .\/ Q ) ) |
| 60 |
43 59
|
eqtrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q .\/ U ) = ( P .\/ Q ) ) |
| 61 |
60
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( R .\/ ( Q .\/ U ) ) = ( R .\/ ( P .\/ Q ) ) ) |
| 62 |
2 4
|
hlatj12 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ U e. A ) ) -> ( Q .\/ ( R .\/ U ) ) = ( R .\/ ( Q .\/ U ) ) ) |
| 63 |
8 10 14 19 62
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q .\/ ( R .\/ U ) ) = ( R .\/ ( Q .\/ U ) ) ) |
| 64 |
2 4
|
hlatjcom |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) = ( R .\/ P ) ) |
| 65 |
8 24 14 64
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ R ) = ( R .\/ P ) ) |
| 66 |
65
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) .\/ Q ) = ( ( R .\/ P ) .\/ Q ) ) |
| 67 |
2 4
|
hlatjass |
|- ( ( K e. HL /\ ( R e. A /\ P e. A /\ Q e. A ) ) -> ( ( R .\/ P ) .\/ Q ) = ( R .\/ ( P .\/ Q ) ) ) |
| 68 |
8 14 24 10 67
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( R .\/ P ) .\/ Q ) = ( R .\/ ( P .\/ Q ) ) ) |
| 69 |
66 68
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) .\/ Q ) = ( R .\/ ( P .\/ Q ) ) ) |
| 70 |
61 63 69
|
3eqtr4rd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) .\/ Q ) = ( Q .\/ ( R .\/ U ) ) ) |
| 71 |
42 70
|
breqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ W ) .<_ ( Q .\/ ( R .\/ U ) ) ) |
| 72 |
11 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( R .\/ U ) e. ( Base ` K ) ) -> ( Q .\/ ( R .\/ U ) ) e. ( Base ` K ) ) |
| 73 |
9 13 21 72
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q .\/ ( R .\/ U ) ) e. ( Base ` K ) ) |
| 74 |
11 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) /\ ( Q .\/ ( R .\/ U ) ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( Q .\/ ( R .\/ U ) ) /\ ( ( P .\/ R ) ./\ W ) .<_ ( Q .\/ ( R .\/ U ) ) ) <-> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) .<_ ( Q .\/ ( R .\/ U ) ) ) ) |
| 75 |
9 13 35 73 74
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q .<_ ( Q .\/ ( R .\/ U ) ) /\ ( ( P .\/ R ) ./\ W ) .<_ ( Q .\/ ( R .\/ U ) ) ) <-> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) .<_ ( Q .\/ ( R .\/ U ) ) ) ) |
| 76 |
23 71 75
|
mpbi2and |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) .<_ ( Q .\/ ( R .\/ U ) ) ) |