Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme35.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme35.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme35.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme35.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme35.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme35.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme35.f |
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
8 |
1 2 3 4 5 6 7
|
cdleme35c |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q .\/ F ) = ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
9 |
8
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q .\/ F ) ./\ W ) = ( ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ./\ W ) ) |
10 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. HL ) |
11 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> Q e. A ) |
12 |
10
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. Lat ) |
13 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P e. A ) |
14 |
|
simp2rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. A ) |
15 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
16 |
15 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) ) |
17 |
10 13 14 16
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
18 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> W e. H ) |
19 |
15 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
20 |
18 19
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> W e. ( Base ` K ) ) |
21 |
15 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
22 |
12 17 20 21
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
23 |
15 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) .<_ W ) |
24 |
12 17 20 23
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ W ) .<_ W ) |
25 |
15 1 2 3 4
|
atmod4i2 |
|- ( ( K e. HL /\ ( Q e. A /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ ( ( P .\/ R ) ./\ W ) .<_ W ) -> ( ( Q ./\ W ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ./\ W ) ) |
26 |
10 11 22 20 24 25
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q ./\ W ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ./\ W ) ) |
27 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) ) |
28 |
|
simp13 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q e. A /\ -. Q .<_ W ) ) |
29 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
30 |
1 3 29 4 5
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( Q ./\ W ) = ( 0. ` K ) ) |
31 |
27 28 30
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q ./\ W ) = ( 0. ` K ) ) |
32 |
31
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q ./\ W ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( 0. ` K ) .\/ ( ( P .\/ R ) ./\ W ) ) ) |
33 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
34 |
10 33
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. OL ) |
35 |
15 2 29
|
olj02 |
|- ( ( K e. OL /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) -> ( ( 0. ` K ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ W ) ) |
36 |
34 22 35
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( 0. ` K ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ W ) ) |
37 |
32 36
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q ./\ W ) .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ W ) ) |
38 |
9 26 37
|
3eqtr2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q .\/ F ) ./\ W ) = ( ( P .\/ R ) ./\ W ) ) |