Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme35.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme35.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme35.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme35.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme35.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme35.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme35.f |
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
8 |
1 2 3 4 5 6 7
|
cdleme35d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( Q .\/ F ) ./\ W ) = ( ( P .\/ R ) ./\ W ) ) |
9 |
8
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ ( ( Q .\/ F ) ./\ W ) ) = ( P .\/ ( ( P .\/ R ) ./\ W ) ) ) |
10 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. HL ) |
11 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P e. A ) |
12 |
|
simp2rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. A ) |
13 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
14 |
13 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) ) |
15 |
10 11 12 14
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
16 |
|
simp11r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> W e. H ) |
17 |
13 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
18 |
16 17
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> W e. ( Base ` K ) ) |
19 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> P .<_ ( P .\/ R ) ) |
20 |
10 11 12 19
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P .<_ ( P .\/ R ) ) |
21 |
13 1 2 3 4
|
atmod3i1 |
|- ( ( K e. HL /\ ( P e. A /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ R ) ) -> ( P .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ ( P .\/ W ) ) ) |
22 |
10 11 15 18 20 21
|
syl131anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ ( ( P .\/ R ) ./\ W ) ) = ( ( P .\/ R ) ./\ ( P .\/ W ) ) ) |
23 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) ) |
24 |
|
simp12 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) ) |
25 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
26 |
1 2 25 4 5
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
27 |
23 24 26
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ W ) = ( 1. ` K ) ) |
28 |
27
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ ( P .\/ W ) ) = ( ( P .\/ R ) ./\ ( 1. ` K ) ) ) |
29 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
30 |
10 29
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. OL ) |
31 |
13 3 25
|
olm11 |
|- ( ( K e. OL /\ ( P .\/ R ) e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ ( 1. ` K ) ) = ( P .\/ R ) ) |
32 |
30 15 31
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ ( 1. ` K ) ) = ( P .\/ R ) ) |
33 |
28 32
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( P .\/ R ) ./\ ( P .\/ W ) ) = ( P .\/ R ) ) |
34 |
9 22 33
|
3eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ ( ( Q .\/ F ) ./\ W ) ) = ( P .\/ R ) ) |