| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme35.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme35.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme35.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme35.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme35.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme35.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme35.f |
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
| 8 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> -. R .<_ ( P .\/ Q ) ) |
| 9 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) ) |
| 10 |
|
simp12l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P e. A ) |
| 11 |
|
simp13l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> Q e. A ) |
| 12 |
1 2 3 4 5 6
|
cdlemeulpq |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A ) ) -> U .<_ ( P .\/ Q ) ) |
| 13 |
9 10 11 12
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> U .<_ ( P .\/ Q ) ) |
| 14 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. HL ) |
| 15 |
14
|
hllatd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> K e. Lat ) |
| 16 |
|
simp2rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. A ) |
| 17 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 18 |
1 2 3 4 5 6 7 17
|
cdleme1b |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ R e. A ) ) -> F e. ( Base ` K ) ) |
| 19 |
9 10 11 16 18
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> F e. ( Base ` K ) ) |
| 20 |
1 2 3 4 5 6 17
|
cdleme0aa |
|- ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) -> U e. ( Base ` K ) ) |
| 21 |
9 10 11 20
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> U e. ( Base ` K ) ) |
| 22 |
17 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 23 |
14 10 11 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 24 |
17 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( F e. ( Base ` K ) /\ U e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( F .<_ ( P .\/ Q ) /\ U .<_ ( P .\/ Q ) ) <-> ( F .\/ U ) .<_ ( P .\/ Q ) ) ) |
| 25 |
15 19 21 23 24
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( F .<_ ( P .\/ Q ) /\ U .<_ ( P .\/ Q ) ) <-> ( F .\/ U ) .<_ ( P .\/ Q ) ) ) |
| 26 |
25
|
biimpd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( F .<_ ( P .\/ Q ) /\ U .<_ ( P .\/ Q ) ) -> ( F .\/ U ) .<_ ( P .\/ Q ) ) ) |
| 27 |
13 26
|
mpan2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F .<_ ( P .\/ Q ) -> ( F .\/ U ) .<_ ( P .\/ Q ) ) ) |
| 28 |
17 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 29 |
16 28
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. ( Base ` K ) ) |
| 30 |
17 1 2
|
latlej1 |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> R .<_ ( R .\/ U ) ) |
| 31 |
15 29 21 30
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R .<_ ( R .\/ U ) ) |
| 32 |
1 2 3 4 5 6 7
|
cdleme35a |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F .\/ U ) = ( R .\/ U ) ) |
| 33 |
31 32
|
breqtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R .<_ ( F .\/ U ) ) |
| 34 |
17 2
|
latjcl |
|- ( ( K e. Lat /\ F e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( F .\/ U ) e. ( Base ` K ) ) |
| 35 |
15 19 21 34
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F .\/ U ) e. ( Base ` K ) ) |
| 36 |
17 1
|
lattr |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ ( F .\/ U ) e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( F .\/ U ) /\ ( F .\/ U ) .<_ ( P .\/ Q ) ) -> R .<_ ( P .\/ Q ) ) ) |
| 37 |
15 29 35 23 36
|
syl13anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( R .<_ ( F .\/ U ) /\ ( F .\/ U ) .<_ ( P .\/ Q ) ) -> R .<_ ( P .\/ Q ) ) ) |
| 38 |
33 37
|
mpand |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( F .\/ U ) .<_ ( P .\/ Q ) -> R .<_ ( P .\/ Q ) ) ) |
| 39 |
27 38
|
syld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F .<_ ( P .\/ Q ) -> R .<_ ( P .\/ Q ) ) ) |
| 40 |
8 39
|
mtod |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> -. F .<_ ( P .\/ Q ) ) |