Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme1.l |
|- .<_ = ( le ` K ) |
2 |
|
cdleme1.j |
|- .\/ = ( join ` K ) |
3 |
|
cdleme1.m |
|- ./\ = ( meet ` K ) |
4 |
|
cdleme1.a |
|- A = ( Atoms ` K ) |
5 |
|
cdleme1.h |
|- H = ( LHyp ` K ) |
6 |
|
cdleme1.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
7 |
|
cdleme1.f |
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
8 |
|
simpll |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. HL ) |
9 |
|
simpr3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. A ) |
10 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
11 |
10 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
12 |
9 11
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. ( Base ` K ) ) |
13 |
|
hllat |
|- ( K e. HL -> K e. Lat ) |
14 |
13
|
ad2antrr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. Lat ) |
15 |
1 2 3 4 5 6
|
lhpat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) |
16 |
15
|
3adant3r3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> U e. A ) |
17 |
10 4
|
atbase |
|- ( U e. A -> U e. ( Base ` K ) ) |
18 |
16 17
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> U e. ( Base ` K ) ) |
19 |
10 2
|
latjcl |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
20 |
14 12 18 19
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
21 |
|
simpr2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> Q e. A ) |
22 |
10 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
23 |
21 22
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> Q e. ( Base ` K ) ) |
24 |
|
simpr1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. A ) |
25 |
10 4
|
atbase |
|- ( P e. A -> P e. ( Base ` K ) ) |
26 |
24 25
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. ( Base ` K ) ) |
27 |
10 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
28 |
14 26 12 27
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
29 |
10 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
30 |
29
|
ad2antlr |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> W e. ( Base ` K ) ) |
31 |
10 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
32 |
14 28 30 31
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
33 |
10 2
|
latjcl |
|- ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) |
34 |
14 23 32 33
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) |
35 |
10 3
|
latmcl |
|- ( ( K e. Lat /\ ( R .\/ U ) e. ( Base ` K ) /\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) -> ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) e. ( Base ` K ) ) |
36 |
14 20 34 35
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) e. ( Base ` K ) ) |
37 |
7 36
|
eqeltrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> F e. ( Base ` K ) ) |
38 |
10 2
|
latjcl |
|- ( ( K e. Lat /\ R e. ( Base ` K ) /\ F e. ( Base ` K ) ) -> ( R .\/ F ) e. ( Base ` K ) ) |
39 |
14 12 37 38
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ F ) e. ( Base ` K ) ) |
40 |
10 2
|
latjcl |
|- ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
41 |
14 26 23 40
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
42 |
10 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
43 |
14 41 30 42
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
44 |
6 43
|
eqbrtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> U .<_ W ) |
45 |
|
simpr3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> -. R .<_ W ) |
46 |
|
nbrne2 |
|- ( ( U .<_ W /\ -. R .<_ W ) -> U =/= R ) |
47 |
44 45 46
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> U =/= R ) |
48 |
47
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R =/= U ) |
49 |
|
eqid |
|- ( |
50 |
2 49 4
|
atcvr1 |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R =/= U <-> R ( |
51 |
8 9 16 50
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R =/= U <-> R ( |
52 |
48 51
|
mpbid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R ( |
53 |
|
simpr3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
54 |
24 21 53
|
3jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) |
55 |
1 2 3 4 5 6 7
|
cdleme1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ F ) = ( R .\/ U ) ) |
56 |
54 55
|
syldan |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ F ) = ( R .\/ U ) ) |
57 |
52 56
|
breqtrrd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R ( |
58 |
10 49
|
cvrne |
|- ( ( ( K e. HL /\ R e. ( Base ` K ) /\ ( R .\/ F ) e. ( Base ` K ) ) /\ R ( R =/= ( R .\/ F ) ) |
59 |
8 12 39 57 58
|
syl31anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R =/= ( R .\/ F ) ) |
60 |
|
oveq2 |
|- ( F = R -> ( R .\/ F ) = ( R .\/ R ) ) |
61 |
60
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) /\ F = R ) -> ( R .\/ F ) = ( R .\/ R ) ) |
62 |
2 4
|
hlatjidm |
|- ( ( K e. HL /\ R e. A ) -> ( R .\/ R ) = R ) |
63 |
8 9 62
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ R ) = R ) |
64 |
63
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) /\ F = R ) -> ( R .\/ R ) = R ) |
65 |
61 64
|
eqtr2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) /\ F = R ) -> R = ( R .\/ F ) ) |
66 |
65
|
ex |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( F = R -> R = ( R .\/ F ) ) ) |
67 |
66
|
necon3d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R =/= ( R .\/ F ) -> F =/= R ) ) |
68 |
59 67
|
mpd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> F =/= R ) |