| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme1.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme1.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme1.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme1.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme1.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme1.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme1.f | 
							 |-  F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simpll | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. HL )  | 
						
						
							| 9 | 
							
								
							 | 
							simpr3l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. A )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 11 | 
							
								10 4
							 | 
							atbase | 
							 |-  ( R e. A -> R e. ( Base ` K ) )  | 
						
						
							| 12 | 
							
								9 11
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. ( Base ` K ) )  | 
						
						
							| 13 | 
							
								
							 | 
							hllat | 
							 |-  ( K e. HL -> K e. Lat )  | 
						
						
							| 14 | 
							
								13
							 | 
							ad2antrr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. Lat )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6
							 | 
							lhpat2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A )  | 
						
						
							| 16 | 
							
								15
							 | 
							3adant3r3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> U e. A )  | 
						
						
							| 17 | 
							
								10 4
							 | 
							atbase | 
							 |-  ( U e. A -> U e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> U e. ( Base ` K ) )  | 
						
						
							| 19 | 
							
								10 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) -> ( R .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								14 12 18 19
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ U ) e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simpr2l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> Q e. A )  | 
						
						
							| 22 | 
							
								10 4
							 | 
							atbase | 
							 |-  ( Q e. A -> Q e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> Q e. ( Base ` K ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr1l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. A )  | 
						
						
							| 25 | 
							
								10 4
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								10 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ R e. ( Base ` K ) ) -> ( P .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								14 26 12 27
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ R ) e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								10 5
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 30 | 
							
								29
							 | 
							ad2antlr | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> W e. ( Base ` K ) )  | 
						
						
							| 31 | 
							
								10 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 32 | 
							
								14 28 30 31
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 33 | 
							
								10 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ Q e. ( Base ` K ) /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 34 | 
							
								14 23 32 33
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 35 | 
							
								10 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( R .\/ U ) e. ( Base ` K ) /\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) e. ( Base ` K ) ) -> ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) e. ( Base ` K ) )  | 
						
						
							| 36 | 
							
								14 20 34 35
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) e. ( Base ` K ) )  | 
						
						
							| 37 | 
							
								7 36
							 | 
							eqeltrid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> F e. ( Base ` K ) )  | 
						
						
							| 38 | 
							
								10 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ R e. ( Base ` K ) /\ F e. ( Base ` K ) ) -> ( R .\/ F ) e. ( Base ` K ) )  | 
						
						
							| 39 | 
							
								14 12 37 38
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ F ) e. ( Base ` K ) )  | 
						
						
							| 40 | 
							
								10 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ Q e. ( Base ` K ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 41 | 
							
								14 26 23 40
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 42 | 
							
								10 1 3
							 | 
							latmle2 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W )  | 
						
						
							| 43 | 
							
								14 41 30 42
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W )  | 
						
						
							| 44 | 
							
								6 43
							 | 
							eqbrtrid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> U .<_ W )  | 
						
						
							| 45 | 
							
								
							 | 
							simpr3r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> -. R .<_ W )  | 
						
						
							| 46 | 
							
								
							 | 
							nbrne2 | 
							 |-  ( ( U .<_ W /\ -. R .<_ W ) -> U =/= R )  | 
						
						
							| 47 | 
							
								44 45 46
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> U =/= R )  | 
						
						
							| 48 | 
							
								47
							 | 
							necomd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R =/= U )  | 
						
						
							| 49 | 
							
								
							 | 
							eqid | 
							 |-  (   | 
						
						
							| 50 | 
							
								2 49 4
							 | 
							atcvr1 | 
							 |-  ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R =/= U <-> R (   | 
						
						
							| 51 | 
							
								8 9 16 50
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R =/= U <-> R (   | 
						
						
							| 52 | 
							
								48 51
							 | 
							mpbid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R (   | 
						
						
							| 53 | 
							
								
							 | 
							simpr3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R e. A /\ -. R .<_ W ) )  | 
						
						
							| 54 | 
							
								24 21 53
							 | 
							3jca | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) )  | 
						
						
							| 55 | 
							
								1 2 3 4 5 6 7
							 | 
							cdleme1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ F ) = ( R .\/ U ) )  | 
						
						
							| 56 | 
							
								54 55
							 | 
							syldan | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ F ) = ( R .\/ U ) )  | 
						
						
							| 57 | 
							
								52 56
							 | 
							breqtrrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R (   | 
						
						
							| 58 | 
							
								10 49
							 | 
							cvrne | 
							 |-  ( ( ( K e. HL /\ R e. ( Base ` K ) /\ ( R .\/ F ) e. ( Base ` K ) ) /\ R (  R =/= ( R .\/ F ) )  | 
						
						
							| 59 | 
							
								8 12 39 57 58
							 | 
							syl31anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> R =/= ( R .\/ F ) )  | 
						
						
							| 60 | 
							
								
							 | 
							oveq2 | 
							 |-  ( F = R -> ( R .\/ F ) = ( R .\/ R ) )  | 
						
						
							| 61 | 
							
								60
							 | 
							adantl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) /\ F = R ) -> ( R .\/ F ) = ( R .\/ R ) )  | 
						
						
							| 62 | 
							
								2 4
							 | 
							hlatjidm | 
							 |-  ( ( K e. HL /\ R e. A ) -> ( R .\/ R ) = R )  | 
						
						
							| 63 | 
							
								8 9 62
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ R ) = R )  | 
						
						
							| 64 | 
							
								63
							 | 
							adantr | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) /\ F = R ) -> ( R .\/ R ) = R )  | 
						
						
							| 65 | 
							
								61 64
							 | 
							eqtr2d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) /\ F = R ) -> R = ( R .\/ F ) )  | 
						
						
							| 66 | 
							
								65
							 | 
							ex | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( F = R -> R = ( R .\/ F ) ) )  | 
						
						
							| 67 | 
							
								66
							 | 
							necon3d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R =/= ( R .\/ F ) -> F =/= R ) )  | 
						
						
							| 68 | 
							
								59 67
							 | 
							mpd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> F =/= R )  |