| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdleme1.l |
|- .<_ = ( le ` K ) |
| 2 |
|
cdleme1.j |
|- .\/ = ( join ` K ) |
| 3 |
|
cdleme1.m |
|- ./\ = ( meet ` K ) |
| 4 |
|
cdleme1.a |
|- A = ( Atoms ` K ) |
| 5 |
|
cdleme1.h |
|- H = ( LHyp ` K ) |
| 6 |
|
cdleme1.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
| 7 |
|
cdleme1.f |
|- F = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) |
| 8 |
|
cdleme3.3 |
|- V = ( ( P .\/ R ) ./\ W ) |
| 9 |
1 2 3 4 5 6 7 8
|
cdleme3d |
|- F = ( ( R .\/ U ) ./\ ( Q .\/ V ) ) |
| 10 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> K e. HL ) |
| 11 |
|
simp23l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> R e. A ) |
| 12 |
|
simp1 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) ) |
| 13 |
|
simp21 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
| 14 |
|
simp22l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> Q e. A ) |
| 15 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> P =/= Q ) |
| 16 |
1 2 3 4 5 6
|
lhpat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) ) -> U e. A ) |
| 17 |
12 13 14 15 16
|
syl112anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> U e. A ) |
| 18 |
|
eqid |
|- ( Base ` K ) = ( Base ` K ) |
| 19 |
18 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 20 |
10 11 17 19
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( R .\/ U ) e. ( Base ` K ) ) |
| 21 |
|
simp3r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> -. R .<_ ( P .\/ Q ) ) |
| 22 |
11 21
|
jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( R e. A /\ -. R .<_ ( P .\/ Q ) ) ) |
| 23 |
1 2 3 4 5 6 7 8
|
cdleme3e |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( R e. A /\ -. R .<_ ( P .\/ Q ) ) ) ) -> V e. A ) |
| 24 |
12 13 14 22 23
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> V e. A ) |
| 25 |
18 2 4
|
hlatjcl |
|- ( ( K e. HL /\ Q e. A /\ V e. A ) -> ( Q .\/ V ) e. ( Base ` K ) ) |
| 26 |
10 14 24 25
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( Q .\/ V ) e. ( Base ` K ) ) |
| 27 |
10
|
hllatd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> K e. Lat ) |
| 28 |
|
simp21l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> P e. A ) |
| 29 |
18 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 30 |
10 28 14 29
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) ) |
| 31 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> W e. H ) |
| 32 |
18 5
|
lhpbase |
|- ( W e. H -> W e. ( Base ` K ) ) |
| 33 |
31 32
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) ) |
| 34 |
18 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
| 35 |
27 30 33 34
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ W ) .<_ W ) |
| 36 |
6 35
|
eqbrtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> U .<_ W ) |
| 37 |
|
simp23r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> -. R .<_ W ) |
| 38 |
|
nbrne2 |
|- ( ( U .<_ W /\ -. R .<_ W ) -> U =/= R ) |
| 39 |
36 37 38
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> U =/= R ) |
| 40 |
39
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> R =/= U ) |
| 41 |
|
eqid |
|- ( Lines ` K ) = ( Lines ` K ) |
| 42 |
|
eqid |
|- ( pmap ` K ) = ( pmap ` K ) |
| 43 |
2 4 41 42
|
linepmap |
|- ( ( ( K e. Lat /\ R e. A /\ U e. A ) /\ R =/= U ) -> ( ( pmap ` K ) ` ( R .\/ U ) ) e. ( Lines ` K ) ) |
| 44 |
27 11 17 40 43
|
syl31anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( pmap ` K ) ` ( R .\/ U ) ) e. ( Lines ` K ) ) |
| 45 |
18 2 4
|
hlatjcl |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> ( P .\/ R ) e. ( Base ` K ) ) |
| 46 |
10 28 11 45
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( P .\/ R ) e. ( Base ` K ) ) |
| 47 |
18 1 3
|
latmle2 |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) .<_ W ) |
| 48 |
27 46 33 47
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ R ) ./\ W ) .<_ W ) |
| 49 |
8 48
|
eqbrtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> V .<_ W ) |
| 50 |
|
simp22r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> -. Q .<_ W ) |
| 51 |
|
nbrne2 |
|- ( ( V .<_ W /\ -. Q .<_ W ) -> V =/= Q ) |
| 52 |
49 50 51
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> V =/= Q ) |
| 53 |
52
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> Q =/= V ) |
| 54 |
2 4 41 42
|
linepmap |
|- ( ( ( K e. Lat /\ Q e. A /\ V e. A ) /\ Q =/= V ) -> ( ( pmap ` K ) ` ( Q .\/ V ) ) e. ( Lines ` K ) ) |
| 55 |
27 14 24 53 54
|
syl31anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( pmap ` K ) ` ( Q .\/ V ) ) e. ( Lines ` K ) ) |
| 56 |
1 2 4
|
hlatlej1 |
|- ( ( K e. HL /\ R e. A /\ U e. A ) -> R .<_ ( R .\/ U ) ) |
| 57 |
10 11 17 56
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> R .<_ ( R .\/ U ) ) |
| 58 |
|
nbrne2 |
|- ( ( V .<_ W /\ -. R .<_ W ) -> V =/= R ) |
| 59 |
49 37 58
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> V =/= R ) |
| 60 |
59
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> R =/= V ) |
| 61 |
1 2 4
|
hlatexch2 |
|- ( ( K e. HL /\ ( R e. A /\ Q e. A /\ V e. A ) /\ R =/= V ) -> ( R .<_ ( Q .\/ V ) -> Q .<_ ( R .\/ V ) ) ) |
| 62 |
10 11 14 24 60 61
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( R .<_ ( Q .\/ V ) -> Q .<_ ( R .\/ V ) ) ) |
| 63 |
8
|
oveq2i |
|- ( R .\/ V ) = ( R .\/ ( ( P .\/ R ) ./\ W ) ) |
| 64 |
1 2 4
|
hlatlej2 |
|- ( ( K e. HL /\ P e. A /\ R e. A ) -> R .<_ ( P .\/ R ) ) |
| 65 |
10 28 11 64
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ R ) ) |
| 66 |
18 1 3
|
latmle1 |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) .<_ ( P .\/ R ) ) |
| 67 |
27 46 33 66
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ R ) ./\ W ) .<_ ( P .\/ R ) ) |
| 68 |
18 4
|
atbase |
|- ( R e. A -> R e. ( Base ` K ) ) |
| 69 |
11 68
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> R e. ( Base ` K ) ) |
| 70 |
18 3
|
latmcl |
|- ( ( K e. Lat /\ ( P .\/ R ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
| 71 |
27 46 33 70
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) ) |
| 72 |
18 1 2
|
latjle12 |
|- ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ ( ( P .\/ R ) ./\ W ) e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) ) -> ( ( R .<_ ( P .\/ R ) /\ ( ( P .\/ R ) ./\ W ) .<_ ( P .\/ R ) ) <-> ( R .\/ ( ( P .\/ R ) ./\ W ) ) .<_ ( P .\/ R ) ) ) |
| 73 |
27 69 71 46 72
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( R .<_ ( P .\/ R ) /\ ( ( P .\/ R ) ./\ W ) .<_ ( P .\/ R ) ) <-> ( R .\/ ( ( P .\/ R ) ./\ W ) ) .<_ ( P .\/ R ) ) ) |
| 74 |
65 67 73
|
mpbi2and |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( P .\/ R ) ./\ W ) ) .<_ ( P .\/ R ) ) |
| 75 |
63 74
|
eqbrtrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( R .\/ V ) .<_ ( P .\/ R ) ) |
| 76 |
18 4
|
atbase |
|- ( Q e. A -> Q e. ( Base ` K ) ) |
| 77 |
14 76
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> Q e. ( Base ` K ) ) |
| 78 |
18 2 4
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ V e. A ) -> ( R .\/ V ) e. ( Base ` K ) ) |
| 79 |
10 11 24 78
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( R .\/ V ) e. ( Base ` K ) ) |
| 80 |
18 1
|
lattr |
|- ( ( K e. Lat /\ ( Q e. ( Base ` K ) /\ ( R .\/ V ) e. ( Base ` K ) /\ ( P .\/ R ) e. ( Base ` K ) ) ) -> ( ( Q .<_ ( R .\/ V ) /\ ( R .\/ V ) .<_ ( P .\/ R ) ) -> Q .<_ ( P .\/ R ) ) ) |
| 81 |
27 77 79 46 80
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( Q .<_ ( R .\/ V ) /\ ( R .\/ V ) .<_ ( P .\/ R ) ) -> Q .<_ ( P .\/ R ) ) ) |
| 82 |
75 81
|
mpan2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( Q .<_ ( R .\/ V ) -> Q .<_ ( P .\/ R ) ) ) |
| 83 |
15
|
necomd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> Q =/= P ) |
| 84 |
1 2 4
|
hlatexch1 |
|- ( ( K e. HL /\ ( Q e. A /\ R e. A /\ P e. A ) /\ Q =/= P ) -> ( Q .<_ ( P .\/ R ) -> R .<_ ( P .\/ Q ) ) ) |
| 85 |
10 14 11 28 83 84
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( Q .<_ ( P .\/ R ) -> R .<_ ( P .\/ Q ) ) ) |
| 86 |
62 82 85
|
3syld |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( R .<_ ( Q .\/ V ) -> R .<_ ( P .\/ Q ) ) ) |
| 87 |
21 86
|
mtod |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> -. R .<_ ( Q .\/ V ) ) |
| 88 |
|
nbrne1 |
|- ( ( R .<_ ( R .\/ U ) /\ -. R .<_ ( Q .\/ V ) ) -> ( R .\/ U ) =/= ( Q .\/ V ) ) |
| 89 |
57 87 88
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( R .\/ U ) =/= ( Q .\/ V ) ) |
| 90 |
14 15
|
jca |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( Q e. A /\ P =/= Q ) ) |
| 91 |
|
simp23 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
| 92 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 93 |
1 2 3 4 5 6 7 92
|
cdleme3c |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ P =/= Q ) /\ ( R e. A /\ -. R .<_ W ) ) ) -> F =/= ( 0. ` K ) ) |
| 94 |
12 13 90 91 93
|
syl13anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> F =/= ( 0. ` K ) ) |
| 95 |
9 94
|
eqnetrrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ U ) ./\ ( Q .\/ V ) ) =/= ( 0. ` K ) ) |
| 96 |
18 3 92 4 41 42
|
2lnat |
|- ( ( ( K e. HL /\ ( R .\/ U ) e. ( Base ` K ) /\ ( Q .\/ V ) e. ( Base ` K ) ) /\ ( ( ( pmap ` K ) ` ( R .\/ U ) ) e. ( Lines ` K ) /\ ( ( pmap ` K ) ` ( Q .\/ V ) ) e. ( Lines ` K ) ) /\ ( ( R .\/ U ) =/= ( Q .\/ V ) /\ ( ( R .\/ U ) ./\ ( Q .\/ V ) ) =/= ( 0. ` K ) ) ) -> ( ( R .\/ U ) ./\ ( Q .\/ V ) ) e. A ) |
| 97 |
10 20 26 44 55 89 95 96
|
syl322anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ U ) ./\ ( Q .\/ V ) ) e. A ) |
| 98 |
9 97
|
eqeltrid |
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> F e. A ) |