Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme40.b |
|- B = ( Base ` K ) |
2 |
|
cdleme40.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme40.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme40.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme40.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme40.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme40.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme40.e |
|- E = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
9 |
|
cdleme40.g |
|- G = ( ( P .\/ Q ) ./\ ( E .\/ ( ( s .\/ t ) ./\ W ) ) ) |
10 |
|
cdleme40.i |
|- I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = G ) ) |
11 |
|
cdleme40.n |
|- N = if ( s .<_ ( P .\/ Q ) , I , D ) |
12 |
|
cdleme40.d |
|- D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
13 |
|
cdleme40r.y |
|- Y = ( ( u .\/ U ) ./\ ( Q .\/ ( ( P .\/ u ) ./\ W ) ) ) |
14 |
|
eqid |
|- ( ( P .\/ Q ) ./\ ( E .\/ ( ( R .\/ t ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( E .\/ ( ( R .\/ t ) ./\ W ) ) ) |
15 |
|
eqid |
|- ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = ( ( P .\/ Q ) ./\ ( E .\/ ( ( R .\/ t ) ./\ W ) ) ) ) ) = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = ( ( P .\/ Q ) ./\ ( E .\/ ( ( R .\/ t ) ./\ W ) ) ) ) ) |
16 |
|
eqid |
|- ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) = ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) |
17 |
|
eqid |
|- ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( S .\/ v ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( S .\/ v ) ./\ W ) ) ) |
18 |
|
eqid |
|- ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) |
19 |
|
eqid |
|- ( iota_ z e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( P .\/ Q ) ) -> z = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) = ( iota_ z e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( P .\/ Q ) ) -> z = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) |
20 |
|
eqid |
|- if ( u .<_ ( P .\/ Q ) , ( iota_ z e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( P .\/ Q ) ) -> z = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , ( ( u .\/ U ) ./\ ( Q .\/ ( ( P .\/ u ) ./\ W ) ) ) ) = if ( u .<_ ( P .\/ Q ) , ( iota_ z e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( P .\/ Q ) ) -> z = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , ( ( u .\/ U ) ./\ ( Q .\/ ( ( P .\/ u ) ./\ W ) ) ) ) |
21 |
|
eqid |
|- ( iota_ z e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( P .\/ Q ) ) -> z = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( S .\/ v ) ./\ W ) ) ) ) ) = ( iota_ z e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( P .\/ Q ) ) -> z = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( S .\/ v ) ./\ W ) ) ) ) ) |
22 |
1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 18 19 20 21
|
cdleme40n |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> [_ R / s ]_ N =/= [_ S / u ]_ if ( u .<_ ( P .\/ Q ) , ( iota_ z e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( P .\/ Q ) ) -> z = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , ( ( u .\/ U ) ./\ ( Q .\/ ( ( P .\/ u ) ./\ W ) ) ) ) ) |
23 |
|
simp23l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> S e. A ) |
24 |
|
eqid |
|- ( ( u .\/ U ) ./\ ( Q .\/ ( ( P .\/ u ) ./\ W ) ) ) = ( ( u .\/ U ) ./\ ( Q .\/ ( ( P .\/ u ) ./\ W ) ) ) |
25 |
1 2 3 4 5 6 7 8 9 10 11 12 24 16 18 19 20
|
cdleme40v |
|- ( S e. A -> [_ S / s ]_ N = [_ S / u ]_ if ( u .<_ ( P .\/ Q ) , ( iota_ z e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( P .\/ Q ) ) -> z = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , ( ( u .\/ U ) ./\ ( Q .\/ ( ( P .\/ u ) ./\ W ) ) ) ) ) |
26 |
23 25
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> [_ S / s ]_ N = [_ S / u ]_ if ( u .<_ ( P .\/ Q ) , ( iota_ z e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( P .\/ Q ) ) -> z = ( ( P .\/ Q ) ./\ ( ( ( v .\/ U ) ./\ ( Q .\/ ( ( P .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , ( ( u .\/ U ) ./\ ( Q .\/ ( ( P .\/ u ) ./\ W ) ) ) ) ) |
27 |
22 26
|
neeqtrrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> [_ R / s ]_ N =/= [_ S / s ]_ N ) |