Metamath Proof Explorer


Theorem cdleme41sn3aw

Description: Part of proof of Lemma E in Crawley p. 113. Show that f(r) is different on and off the P .\/ Q line. TODO: FIX COMMENT. (Contributed by NM, 18-Mar-2013)

Ref Expression
Hypotheses cdleme41.b
|- B = ( Base ` K )
cdleme41.l
|- .<_ = ( le ` K )
cdleme41.j
|- .\/ = ( join ` K )
cdleme41.m
|- ./\ = ( meet ` K )
cdleme41.a
|- A = ( Atoms ` K )
cdleme41.h
|- H = ( LHyp ` K )
cdleme41.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme41.d
|- D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
cdleme41.e
|- E = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdleme41.g
|- G = ( ( P .\/ Q ) ./\ ( E .\/ ( ( s .\/ t ) ./\ W ) ) )
cdleme41.i
|- I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = G ) )
cdleme41.n
|- N = if ( s .<_ ( P .\/ Q ) , I , D )
Assertion cdleme41sn3aw
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> [_ R / s ]_ N =/= [_ S / s ]_ N )

Proof

Step Hyp Ref Expression
1 cdleme41.b
 |-  B = ( Base ` K )
2 cdleme41.l
 |-  .<_ = ( le ` K )
3 cdleme41.j
 |-  .\/ = ( join ` K )
4 cdleme41.m
 |-  ./\ = ( meet ` K )
5 cdleme41.a
 |-  A = ( Atoms ` K )
6 cdleme41.h
 |-  H = ( LHyp ` K )
7 cdleme41.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdleme41.d
 |-  D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
9 cdleme41.e
 |-  E = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
10 cdleme41.g
 |-  G = ( ( P .\/ Q ) ./\ ( E .\/ ( ( s .\/ t ) ./\ W ) ) )
11 cdleme41.i
 |-  I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = G ) )
12 cdleme41.n
 |-  N = if ( s .<_ ( P .\/ Q ) , I , D )
13 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
14 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> P =/= Q )
15 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> ( R e. A /\ -. R .<_ W ) )
16 simp31
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> R .<_ ( P .\/ Q ) )
17 eqid
 |-  ( ( P .\/ Q ) ./\ ( E .\/ ( ( R .\/ t ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( E .\/ ( ( R .\/ t ) ./\ W ) ) )
18 eqid
 |-  ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = ( ( P .\/ Q ) ./\ ( E .\/ ( ( R .\/ t ) ./\ W ) ) ) ) ) = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = ( ( P .\/ Q ) ./\ ( E .\/ ( ( R .\/ t ) ./\ W ) ) ) ) )
19 1 2 3 4 5 6 7 8 9 10 11 12 17 18 cdleme41sn3a
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N .<_ ( P .\/ Q ) )
20 13 14 15 16 19 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> [_ R / s ]_ N .<_ ( P .\/ Q ) )
21 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> ( S e. A /\ -. S .<_ W ) )
22 simp32
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> -. S .<_ ( P .\/ Q ) )
23 1 2 3 4 5 6 7 8 12 cdleme35sn3a
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> -. [_ S / s ]_ N .<_ ( P .\/ Q ) )
24 13 14 21 22 23 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> -. [_ S / s ]_ N .<_ ( P .\/ Q ) )
25 nbrne2
 |-  ( ( [_ R / s ]_ N .<_ ( P .\/ Q ) /\ -. [_ S / s ]_ N .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N =/= [_ S / s ]_ N )
26 20 24 25 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) /\ R =/= S ) ) -> [_ R / s ]_ N =/= [_ S / s ]_ N )