Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme42.b |
|- B = ( Base ` K ) |
2 |
|
cdleme42.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme42.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme42.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme42.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme42.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme42.v |
|- V = ( ( R .\/ S ) ./\ W ) |
8 |
|
eqid |
|- ( 1. ` K ) = ( 1. ` K ) |
9 |
2 3 8 5 6
|
lhpjat2 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) ) |
10 |
9
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) ) |
11 |
10
|
oveq2d |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( R .\/ S ) ./\ ( R .\/ W ) ) = ( ( R .\/ S ) ./\ ( 1. ` K ) ) ) |
12 |
7
|
oveq2i |
|- ( R .\/ V ) = ( R .\/ ( ( R .\/ S ) ./\ W ) ) |
13 |
|
simp1l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> K e. HL ) |
14 |
|
simp2l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> R e. A ) |
15 |
|
simp3l |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> S e. A ) |
16 |
1 3 5
|
hlatjcl |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. B ) |
17 |
13 14 15 16
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ S ) e. B ) |
18 |
|
simp1r |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> W e. H ) |
19 |
1 6
|
lhpbase |
|- ( W e. H -> W e. B ) |
20 |
18 19
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> W e. B ) |
21 |
2 3 5
|
hlatlej1 |
|- ( ( K e. HL /\ R e. A /\ S e. A ) -> R .<_ ( R .\/ S ) ) |
22 |
13 14 15 21
|
syl3anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> R .<_ ( R .\/ S ) ) |
23 |
1 2 3 4 5
|
atmod3i1 |
|- ( ( K e. HL /\ ( R e. A /\ ( R .\/ S ) e. B /\ W e. B ) /\ R .<_ ( R .\/ S ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( ( R .\/ S ) ./\ ( R .\/ W ) ) ) |
24 |
13 14 17 20 22 23
|
syl131anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( ( R .\/ S ) ./\ ( R .\/ W ) ) ) |
25 |
12 24
|
eqtr2id |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( R .\/ S ) ./\ ( R .\/ W ) ) = ( R .\/ V ) ) |
26 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
27 |
13 26
|
syl |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> K e. OL ) |
28 |
1 4 8
|
olm11 |
|- ( ( K e. OL /\ ( R .\/ S ) e. B ) -> ( ( R .\/ S ) ./\ ( 1. ` K ) ) = ( R .\/ S ) ) |
29 |
27 17 28
|
syl2anc |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( R .\/ S ) ./\ ( 1. ` K ) ) = ( R .\/ S ) ) |
30 |
11 25 29
|
3eqtr3rd |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ S ) = ( R .\/ V ) ) |