| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme42.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme42.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme42.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme42.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme42.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme42.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme42.v | 
							 |-  V = ( ( R .\/ S ) ./\ W )  | 
						
						
							| 8 | 
							
								
							 | 
							eqid | 
							 |-  ( 1. ` K ) = ( 1. ` K )  | 
						
						
							| 9 | 
							
								2 3 8 5 6
							 | 
							lhpjat2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							3adant3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( R .\/ S ) ./\ ( R .\/ W ) ) = ( ( R .\/ S ) ./\ ( 1. ` K ) ) )  | 
						
						
							| 12 | 
							
								7
							 | 
							oveq2i | 
							 |-  ( R .\/ V ) = ( R .\/ ( ( R .\/ S ) ./\ W ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> K e. HL )  | 
						
						
							| 14 | 
							
								
							 | 
							simp2l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> R e. A )  | 
						
						
							| 15 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> S e. A )  | 
						
						
							| 16 | 
							
								1 3 5
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. B )  | 
						
						
							| 17 | 
							
								13 14 15 16
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ S ) e. B )  | 
						
						
							| 18 | 
							
								
							 | 
							simp1r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> W e. H )  | 
						
						
							| 19 | 
							
								1 6
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. B )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> W e. B )  | 
						
						
							| 21 | 
							
								2 3 5
							 | 
							hlatlej1 | 
							 |-  ( ( K e. HL /\ R e. A /\ S e. A ) -> R .<_ ( R .\/ S ) )  | 
						
						
							| 22 | 
							
								13 14 15 21
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> R .<_ ( R .\/ S ) )  | 
						
						
							| 23 | 
							
								1 2 3 4 5
							 | 
							atmod3i1 | 
							 |-  ( ( K e. HL /\ ( R e. A /\ ( R .\/ S ) e. B /\ W e. B ) /\ R .<_ ( R .\/ S ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( ( R .\/ S ) ./\ ( R .\/ W ) ) )  | 
						
						
							| 24 | 
							
								13 14 17 20 22 23
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( ( R .\/ S ) ./\ ( R .\/ W ) ) )  | 
						
						
							| 25 | 
							
								12 24
							 | 
							eqtr2id | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( R .\/ S ) ./\ ( R .\/ W ) ) = ( R .\/ V ) )  | 
						
						
							| 26 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 27 | 
							
								13 26
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> K e. OL )  | 
						
						
							| 28 | 
							
								1 4 8
							 | 
							olm11 | 
							 |-  ( ( K e. OL /\ ( R .\/ S ) e. B ) -> ( ( R .\/ S ) ./\ ( 1. ` K ) ) = ( R .\/ S ) )  | 
						
						
							| 29 | 
							
								27 17 28
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( R .\/ S ) ./\ ( 1. ` K ) ) = ( R .\/ S ) )  | 
						
						
							| 30 | 
							
								11 25 29
							 | 
							3eqtr3rd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ S ) = ( R .\/ V ) )  |