| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme42.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme42.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme42.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme42.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme42.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme42.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme42.v | 
							 |-  V = ( ( R .\/ S ) ./\ W )  | 
						
						
							| 8 | 
							
								7
							 | 
							oveq2i | 
							 |-  ( R .\/ V ) = ( R .\/ ( ( R .\/ S ) ./\ W ) )  | 
						
						
							| 9 | 
							
								1 2 3 4 5 6 7
							 | 
							cdleme42a | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ S ) = ( R .\/ V ) )  | 
						
						
							| 10 | 
							
								9
							 | 
							oveq1d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( R .\/ S ) ./\ W ) = ( ( R .\/ V ) ./\ W ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( R .\/ ( ( R .\/ V ) ./\ W ) ) )  | 
						
						
							| 12 | 
							
								8 11
							 | 
							eqtr2id | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ ( ( R .\/ V ) ./\ W ) ) = ( R .\/ V ) )  |