Step |
Hyp |
Ref |
Expression |
1 |
|
cdleme41.b |
|- B = ( Base ` K ) |
2 |
|
cdleme41.l |
|- .<_ = ( le ` K ) |
3 |
|
cdleme41.j |
|- .\/ = ( join ` K ) |
4 |
|
cdleme41.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdleme41.a |
|- A = ( Atoms ` K ) |
6 |
|
cdleme41.h |
|- H = ( LHyp ` K ) |
7 |
|
cdleme41.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdleme41.d |
|- D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdleme41.e |
|- E = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
10 |
|
cdleme41.g |
|- G = ( ( P .\/ Q ) ./\ ( E .\/ ( ( s .\/ t ) ./\ W ) ) ) |
11 |
|
cdleme41.i |
|- I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = G ) ) |
12 |
|
cdleme41.n |
|- N = if ( s .<_ ( P .\/ Q ) , I , D ) |
13 |
|
cdleme41.o |
|- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) ) |
14 |
|
cdleme41.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) ) |
15 |
|
cdleme34e.v |
|- V = ( ( R .\/ S ) ./\ W ) |
16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
cdleme42e |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ P =/= Q ) -> ( F ` ( R .\/ V ) ) = ( [_ R / s ]_ N .\/ ( ( R .\/ V ) ./\ W ) ) ) |
17 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
cdleme32fva1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) /\ P =/= Q ) -> ( F ` R ) = [_ R / s ]_ N ) |
18 |
17
|
3adant2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ P =/= Q ) -> ( F ` R ) = [_ R / s ]_ N ) |
19 |
|
simp11 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ P =/= Q ) -> ( K e. HL /\ W e. H ) ) |
20 |
|
simp2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ P =/= Q ) -> ( R e. A /\ -. R .<_ W ) ) |
21 |
|
simp2r |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ P =/= Q ) -> ( S e. A /\ -. S .<_ W ) ) |
22 |
1 2 3 4 5 6 15
|
cdleme42a |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( R .\/ S ) = ( R .\/ V ) ) |
23 |
19 20 21 22
|
syl3anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ P =/= Q ) -> ( R .\/ S ) = ( R .\/ V ) ) |
24 |
23
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ P =/= Q ) -> ( ( R .\/ S ) ./\ W ) = ( ( R .\/ V ) ./\ W ) ) |
25 |
15 24
|
eqtrid |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ P =/= Q ) -> V = ( ( R .\/ V ) ./\ W ) ) |
26 |
18 25
|
oveq12d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ P =/= Q ) -> ( ( F ` R ) .\/ V ) = ( [_ R / s ]_ N .\/ ( ( R .\/ V ) ./\ W ) ) ) |
27 |
16 26
|
eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ P =/= Q ) -> ( F ` ( R .\/ V ) ) = ( ( F ` R ) .\/ V ) ) |