Metamath Proof Explorer


Theorem cdleme42mgN

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT . f preserves join: f(r \/ s) = f(r) \/ s, p. 115 10th line from bottom. TODO: Use instead of cdleme42mN ? Combine with cdleme42mN ? (Contributed by NM, 20-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme41.b
|- B = ( Base ` K )
cdleme41.l
|- .<_ = ( le ` K )
cdleme41.j
|- .\/ = ( join ` K )
cdleme41.m
|- ./\ = ( meet ` K )
cdleme41.a
|- A = ( Atoms ` K )
cdleme41.h
|- H = ( LHyp ` K )
cdleme41.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme41.d
|- D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
cdleme41.e
|- E = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdleme41.g
|- G = ( ( P .\/ Q ) ./\ ( E .\/ ( ( s .\/ t ) ./\ W ) ) )
cdleme41.i
|- I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = G ) )
cdleme41.n
|- N = if ( s .<_ ( P .\/ Q ) , I , D )
cdleme41.o
|- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) )
cdleme41.f
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) )
Assertion cdleme42mgN
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) -> ( F ` ( R .\/ S ) ) = ( ( F ` R ) .\/ ( F ` S ) ) )

Proof

Step Hyp Ref Expression
1 cdleme41.b
 |-  B = ( Base ` K )
2 cdleme41.l
 |-  .<_ = ( le ` K )
3 cdleme41.j
 |-  .\/ = ( join ` K )
4 cdleme41.m
 |-  ./\ = ( meet ` K )
5 cdleme41.a
 |-  A = ( Atoms ` K )
6 cdleme41.h
 |-  H = ( LHyp ` K )
7 cdleme41.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdleme41.d
 |-  D = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
9 cdleme41.e
 |-  E = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
10 cdleme41.g
 |-  G = ( ( P .\/ Q ) ./\ ( E .\/ ( ( s .\/ t ) ./\ W ) ) )
11 cdleme41.i
 |-  I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = G ) )
12 cdleme41.n
 |-  N = if ( s .<_ ( P .\/ Q ) , I , D )
13 cdleme41.o
 |-  O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) )
14 cdleme41.f
 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) )
15 simpl1l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) -> K e. HL )
16 15 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) -> K e. Lat )
17 simprll
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) -> R e. A )
18 1 5 atbase
 |-  ( R e. A -> R e. B )
19 17 18 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) -> R e. B )
20 simprrl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) -> S e. A )
21 1 5 atbase
 |-  ( S e. A -> S e. B )
22 20 21 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) -> S e. B )
23 16 19 22 3jca
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) -> ( K e. Lat /\ R e. B /\ S e. B ) )
24 1 3 latjcl
 |-  ( ( K e. Lat /\ R e. B /\ S e. B ) -> ( R .\/ S ) e. B )
25 14 cdleme31id
 |-  ( ( ( R .\/ S ) e. B /\ P = Q ) -> ( F ` ( R .\/ S ) ) = ( R .\/ S ) )
26 24 25 sylan
 |-  ( ( ( K e. Lat /\ R e. B /\ S e. B ) /\ P = Q ) -> ( F ` ( R .\/ S ) ) = ( R .\/ S ) )
27 14 cdleme31id
 |-  ( ( R e. B /\ P = Q ) -> ( F ` R ) = R )
28 27 3ad2antl2
 |-  ( ( ( K e. Lat /\ R e. B /\ S e. B ) /\ P = Q ) -> ( F ` R ) = R )
29 14 cdleme31id
 |-  ( ( S e. B /\ P = Q ) -> ( F ` S ) = S )
30 29 3ad2antl3
 |-  ( ( ( K e. Lat /\ R e. B /\ S e. B ) /\ P = Q ) -> ( F ` S ) = S )
31 28 30 oveq12d
 |-  ( ( ( K e. Lat /\ R e. B /\ S e. B ) /\ P = Q ) -> ( ( F ` R ) .\/ ( F ` S ) ) = ( R .\/ S ) )
32 26 31 eqtr4d
 |-  ( ( ( K e. Lat /\ R e. B /\ S e. B ) /\ P = Q ) -> ( F ` ( R .\/ S ) ) = ( ( F ` R ) .\/ ( F ` S ) ) )
33 23 32 sylan
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) /\ P = Q ) -> ( F ` ( R .\/ S ) ) = ( ( F ` R ) .\/ ( F ` S ) ) )
34 simpll
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) /\ P =/= Q ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
35 simpr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) /\ P =/= Q ) -> P =/= Q )
36 simplrl
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) /\ P =/= Q ) -> ( R e. A /\ -. R .<_ W ) )
37 simplrr
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) /\ P =/= Q ) -> ( S e. A /\ -. S .<_ W ) )
38 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdleme42mN
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) -> ( F ` ( R .\/ S ) ) = ( ( F ` R ) .\/ ( F ` S ) ) )
39 34 35 36 37 38 syl13anc
 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) /\ P =/= Q ) -> ( F ` ( R .\/ S ) ) = ( ( F ` R ) .\/ ( F ` S ) ) )
40 33 39 pm2.61dane
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) ) -> ( F ` ( R .\/ S ) ) = ( ( F ` R ) .\/ ( F ` S ) ) )