Metamath Proof Explorer


Theorem cdleme43dN

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT p. 116 2nd line: f(r) v s = f(r) v f(g(s)). (Contributed by NM, 20-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme43.b
|- B = ( Base ` K )
cdleme43.l
|- .<_ = ( le ` K )
cdleme43.j
|- .\/ = ( join ` K )
cdleme43.m
|- ./\ = ( meet ` K )
cdleme43.a
|- A = ( Atoms ` K )
cdleme43.h
|- H = ( LHyp ` K )
cdleme43.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme43.x
|- X = ( ( Q .\/ P ) ./\ W )
cdleme43.c
|- C = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
cdleme43.f
|- Z = ( ( P .\/ Q ) ./\ ( C .\/ ( ( R .\/ S ) ./\ W ) ) )
cdleme43.d
|- D = ( ( S .\/ X ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) )
cdleme43.g
|- G = ( ( Q .\/ P ) ./\ ( D .\/ ( ( Z .\/ S ) ./\ W ) ) )
cdleme43.e
|- E = ( ( D .\/ U ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) )
cdleme43.v
|- V = ( ( Z .\/ S ) ./\ W )
cdleme43.y
|- Y = ( ( R .\/ D ) ./\ W )
Assertion cdleme43dN
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( Z .\/ S ) = ( Z .\/ E ) )

Proof

Step Hyp Ref Expression
1 cdleme43.b
 |-  B = ( Base ` K )
2 cdleme43.l
 |-  .<_ = ( le ` K )
3 cdleme43.j
 |-  .\/ = ( join ` K )
4 cdleme43.m
 |-  ./\ = ( meet ` K )
5 cdleme43.a
 |-  A = ( Atoms ` K )
6 cdleme43.h
 |-  H = ( LHyp ` K )
7 cdleme43.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdleme43.x
 |-  X = ( ( Q .\/ P ) ./\ W )
9 cdleme43.c
 |-  C = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
10 cdleme43.f
 |-  Z = ( ( P .\/ Q ) ./\ ( C .\/ ( ( R .\/ S ) ./\ W ) ) )
11 cdleme43.d
 |-  D = ( ( S .\/ X ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) )
12 cdleme43.g
 |-  G = ( ( Q .\/ P ) ./\ ( D .\/ ( ( Z .\/ S ) ./\ W ) ) )
13 cdleme43.e
 |-  E = ( ( D .\/ U ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) )
14 cdleme43.v
 |-  V = ( ( Z .\/ S ) ./\ W )
15 cdleme43.y
 |-  Y = ( ( R .\/ D ) ./\ W )
16 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. HL )
17 simp12l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> P e. A )
18 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> Q e. A )
19 3 5 hlatjcom
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) = ( Q .\/ P ) )
20 16 17 18 19 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) = ( Q .\/ P ) )
21 20 oveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ W ) = ( ( Q .\/ P ) ./\ W ) )
22 21 7 8 3eqtr4g
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> U = X )
23 22 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( D .\/ U ) = ( D .\/ X ) )
24 23 oveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( D .\/ U ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) ) = ( ( D .\/ X ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) ) )
25 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) )
26 simp13
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( Q e. A /\ -. Q .<_ W ) )
27 simp12
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P e. A /\ -. P .<_ W ) )
28 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= Q )
29 28 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> Q =/= P )
30 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) )
31 simp3r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) )
32 20 breq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( S .<_ ( P .\/ Q ) <-> S .<_ ( Q .\/ P ) ) )
33 31 32 mtbid
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( Q .\/ P ) )
34 2 3 4 5 6 8 11 cdleme35g
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) /\ ( Q =/= P /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( Q .\/ P ) ) -> ( ( D .\/ X ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) ) = S )
35 25 26 27 29 30 33 34 syl321anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( D .\/ X ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) ) = S )
36 24 35 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( D .\/ U ) ./\ ( Q .\/ ( ( P .\/ D ) ./\ W ) ) ) = S )
37 13 36 eqtrid
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> E = S )
38 37 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( Z .\/ E ) = ( Z .\/ S ) )
39 38 eqcomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( Z .\/ S ) = ( Z .\/ E ) )