Metamath Proof Explorer


Theorem cdleme48b

Description: TODO: fix comment. (Contributed by NM, 8-Apr-2013)

Ref Expression
Hypotheses cdlemef46.b
|- B = ( Base ` K )
cdlemef46.l
|- .<_ = ( le ` K )
cdlemef46.j
|- .\/ = ( join ` K )
cdlemef46.m
|- ./\ = ( meet ` K )
cdlemef46.a
|- A = ( Atoms ` K )
cdlemef46.h
|- H = ( LHyp ` K )
cdlemef46.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemef46.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemefs46.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemef46.f
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
Assertion cdleme48b
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` X ) ./\ W ) = ( X ./\ W ) )

Proof

Step Hyp Ref Expression
1 cdlemef46.b
 |-  B = ( Base ` K )
2 cdlemef46.l
 |-  .<_ = ( le ` K )
3 cdlemef46.j
 |-  .\/ = ( join ` K )
4 cdlemef46.m
 |-  ./\ = ( meet ` K )
5 cdlemef46.a
 |-  A = ( Atoms ` K )
6 cdlemef46.h
 |-  H = ( LHyp ` K )
7 cdlemef46.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemef46.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemefs46.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemef46.f
 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
11 1 2 3 4 5 6 7 8 9 10 cdleme48fv
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( F ` X ) = ( ( F ` S ) .\/ ( X ./\ W ) ) )
12 11 oveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` X ) ./\ W ) = ( ( ( F ` S ) .\/ ( X ./\ W ) ) ./\ W ) )
13 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( K e. HL /\ W e. H ) )
14 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
15 simp3l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( S e. A /\ -. S .<_ W ) )
16 1 2 3 4 5 6 7 8 9 10 cdleme46fvaw
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ -. S .<_ W ) ) -> ( ( F ` S ) e. A /\ -. ( F ` S ) .<_ W ) )
17 14 15 16 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` S ) e. A /\ -. ( F ` S ) .<_ W ) )
18 simp2rl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> X e. B )
19 1 2 3 4 5 6 lhpelim
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( F ` S ) e. A /\ -. ( F ` S ) .<_ W ) /\ X e. B ) -> ( ( ( F ` S ) .\/ ( X ./\ W ) ) ./\ W ) = ( X ./\ W ) )
20 13 17 18 19 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( ( F ` S ) .\/ ( X ./\ W ) ) ./\ W ) = ( X ./\ W ) )
21 12 20 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ ( S .\/ ( X ./\ W ) ) = X ) ) -> ( ( F ` X ) ./\ W ) = ( X ./\ W ) )