Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemef46g.b |
|- B = ( Base ` K ) |
2 |
|
cdlemef46g.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemef46g.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemef46g.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemef46g.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemef46g.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemef46g.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdlemef46g.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
9 |
|
cdlemefs46g.e |
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) |
10 |
|
cdlemef46g.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) |
11 |
|
cdlemef46.v |
|- V = ( ( Q .\/ P ) ./\ W ) |
12 |
|
cdlemef46.n |
|- N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) |
13 |
|
cdlemefs46.o |
|- O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) ) |
14 |
|
cdlemef46.g |
|- G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) ) |
15 |
|
simpll |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ ( P =/= Q /\ -. X .<_ W ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
16 |
|
simprl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ ( P =/= Q /\ -. X .<_ W ) ) -> P =/= Q ) |
17 |
|
simplr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ ( P =/= Q /\ -. X .<_ W ) ) -> X e. B ) |
18 |
|
simprr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ ( P =/= Q /\ -. X .<_ W ) ) -> -. X .<_ W ) |
19 |
17 18
|
jca |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ ( P =/= Q /\ -. X .<_ W ) ) -> ( X e. B /\ -. X .<_ W ) ) |
20 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14
|
cdleme48gfv1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( X e. B /\ -. X .<_ W ) ) ) -> ( G ` ( F ` X ) ) = X ) |
21 |
15 16 19 20
|
syl12anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ ( P =/= Q /\ -. X .<_ W ) ) -> ( G ` ( F ` X ) ) = X ) |
22 |
10
|
cdleme31fv2 |
|- ( ( X e. B /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> ( F ` X ) = X ) |
23 |
22
|
adantll |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> ( F ` X ) = X ) |
24 |
|
simplr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> X e. B ) |
25 |
23 24
|
eqeltrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> ( F ` X ) e. B ) |
26 |
|
simpr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> -. ( P =/= Q /\ -. X .<_ W ) ) |
27 |
|
necom |
|- ( Q =/= P <-> P =/= Q ) |
28 |
27
|
a1i |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> ( Q =/= P <-> P =/= Q ) ) |
29 |
23
|
breq1d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> ( ( F ` X ) .<_ W <-> X .<_ W ) ) |
30 |
29
|
notbid |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> ( -. ( F ` X ) .<_ W <-> -. X .<_ W ) ) |
31 |
28 30
|
anbi12d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> ( ( Q =/= P /\ -. ( F ` X ) .<_ W ) <-> ( P =/= Q /\ -. X .<_ W ) ) ) |
32 |
26 31
|
mtbird |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> -. ( Q =/= P /\ -. ( F ` X ) .<_ W ) ) |
33 |
14
|
cdleme31fv2 |
|- ( ( ( F ` X ) e. B /\ -. ( Q =/= P /\ -. ( F ` X ) .<_ W ) ) -> ( G ` ( F ` X ) ) = ( F ` X ) ) |
34 |
25 32 33
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> ( G ` ( F ` X ) ) = ( F ` X ) ) |
35 |
34 23
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) /\ -. ( P =/= Q /\ -. X .<_ W ) ) -> ( G ` ( F ` X ) ) = X ) |
36 |
21 35
|
pm2.61dan |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ X e. B ) -> ( G ` ( F ` X ) ) = X ) |