| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme4.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme4.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme4.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme4.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme4.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme4.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme4.f | 
							 |-  F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme4.g | 
							 |-  G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								8
							 | 
							oveq2i | 
							 |-  ( R .\/ G ) = ( R .\/ ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. HL )  | 
						
						
							| 11 | 
							
								
							 | 
							simp23l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> R e. A )  | 
						
						
							| 12 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> P e. A )  | 
						
						
							| 13 | 
							
								
							 | 
							simp22 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> Q e. A )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 15 | 
							
								14 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 16 | 
							
								10 12 13 15
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) e. ( Base ` K ) )  | 
						
						
							| 17 | 
							
								10
							 | 
							hllatd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. Lat )  | 
						
						
							| 18 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simp3ll | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. A )  | 
						
						
							| 20 | 
							
								1 2 3 4 5 6 7 14
							 | 
							cdleme1b | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ S e. A ) ) -> F e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								18 12 13 19 20
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> F e. ( Base ` K ) )  | 
						
						
							| 22 | 
							
								14 2 4
							 | 
							hlatjcl | 
							 |-  ( ( K e. HL /\ R e. A /\ S e. A ) -> ( R .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 23 | 
							
								10 11 19 22
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 24 | 
							
								
							 | 
							simp1r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. H )  | 
						
						
							| 25 | 
							
								14 5
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 26 | 
							
								24 25
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> W e. ( Base ` K ) )  | 
						
						
							| 27 | 
							
								14 3
							 | 
							latmcl | 
							 |-  ( ( K e. Lat /\ ( R .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) -> ( ( R .\/ S ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 28 | 
							
								17 23 26 27
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ W ) e. ( Base ` K ) )  | 
						
						
							| 29 | 
							
								14 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ F e. ( Base ` K ) /\ ( ( R .\/ S ) ./\ W ) e. ( Base ` K ) ) -> ( F .\/ ( ( R .\/ S ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 30 | 
							
								17 21 28 29
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ ( ( R .\/ S ) ./\ W ) ) e. ( Base ` K ) )  | 
						
						
							| 31 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) )  | 
						
						
							| 32 | 
							
								14 1 2 3 4
							 | 
							atmod3i1 | 
							 |-  ( ( K e. HL /\ ( R e. A /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) e. ( Base ` K ) ) /\ R .<_ ( P .\/ Q ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( ( P .\/ Q ) ./\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) )  | 
						
						
							| 33 | 
							
								10 11 16 30 31 32
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( ( P .\/ Q ) ./\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) )  | 
						
						
							| 34 | 
							
								14 4
							 | 
							atbase | 
							 |-  ( S e. A -> S e. ( Base ` K ) )  | 
						
						
							| 35 | 
							
								19 34
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. ( Base ` K ) )  | 
						
						
							| 36 | 
							
								14 1 2
							 | 
							latlej2 | 
							 |-  ( ( K e. Lat /\ S e. ( Base ` K ) /\ ( P .\/ Q ) e. ( Base ` K ) ) -> ( P .\/ Q ) .<_ ( S .\/ ( P .\/ Q ) ) )  | 
						
						
							| 37 | 
							
								17 35 16 36
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) .<_ ( S .\/ ( P .\/ Q ) ) )  | 
						
						
							| 38 | 
							
								14 4
							 | 
							atbase | 
							 |-  ( R e. A -> R e. ( Base ` K ) )  | 
						
						
							| 39 | 
							
								11 38
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> R e. ( Base ` K ) )  | 
						
						
							| 40 | 
							
								14 2
							 | 
							latj12 | 
							 |-  ( ( K e. Lat /\ ( R e. ( Base ` K ) /\ F e. ( Base ` K ) /\ S e. ( Base ` K ) ) ) -> ( R .\/ ( F .\/ S ) ) = ( F .\/ ( R .\/ S ) ) )  | 
						
						
							| 41 | 
							
								17 39 21 35 40
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( F .\/ S ) ) = ( F .\/ ( R .\/ S ) ) )  | 
						
						
							| 42 | 
							
								1 2 3 4 5 6 14
							 | 
							cdleme0aa | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) -> U e. ( Base ` K ) )  | 
						
						
							| 43 | 
							
								18 12 13 42
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> U e. ( Base ` K ) )  | 
						
						
							| 44 | 
							
								14 2
							 | 
							latj12 | 
							 |-  ( ( K e. Lat /\ ( S e. ( Base ` K ) /\ R e. ( Base ` K ) /\ U e. ( Base ` K ) ) ) -> ( S .\/ ( R .\/ U ) ) = ( R .\/ ( S .\/ U ) ) )  | 
						
						
							| 45 | 
							
								17 35 39 43 44
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ ( R .\/ U ) ) = ( R .\/ ( S .\/ U ) ) )  | 
						
						
							| 46 | 
							
								1 2 3 4 5 6
							 | 
							cdleme4 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( P .\/ Q ) = ( R .\/ U ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							3adant3l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) = ( R .\/ U ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ ( P .\/ Q ) ) = ( S .\/ ( R .\/ U ) ) )  | 
						
						
							| 49 | 
							
								14 2
							 | 
							latjcom | 
							 |-  ( ( K e. Lat /\ F e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( F .\/ S ) = ( S .\/ F ) )  | 
						
						
							| 50 | 
							
								17 21 35 49
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ S ) = ( S .\/ F ) )  | 
						
						
							| 51 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) )  | 
						
						
							| 52 | 
							
								1 2 3 4 5 6 7
							 | 
							cdleme1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( S e. A /\ -. S .<_ W ) ) ) -> ( S .\/ F ) = ( S .\/ U ) )  | 
						
						
							| 53 | 
							
								18 12 13 51 52
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ F ) = ( S .\/ U ) )  | 
						
						
							| 54 | 
							
								50 53
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ S ) = ( S .\/ U ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( F .\/ S ) ) = ( R .\/ ( S .\/ U ) ) )  | 
						
						
							| 56 | 
							
								45 48 55
							 | 
							3eqtr4d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ ( P .\/ Q ) ) = ( R .\/ ( F .\/ S ) ) )  | 
						
						
							| 57 | 
							
								1 2 4
							 | 
							hlatlej1 | 
							 |-  ( ( K e. HL /\ R e. A /\ S e. A ) -> R .<_ ( R .\/ S ) )  | 
						
						
							| 58 | 
							
								10 11 19 57
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( R .\/ S ) )  | 
						
						
							| 59 | 
							
								14 1 2 3 4
							 | 
							atmod3i1 | 
							 |-  ( ( K e. HL /\ ( R e. A /\ ( R .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ R .<_ ( R .\/ S ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( ( R .\/ S ) ./\ ( R .\/ W ) ) )  | 
						
						
							| 60 | 
							
								10 11 23 26 58 59
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( ( R .\/ S ) ./\ ( R .\/ W ) ) )  | 
						
						
							| 61 | 
							
								
							 | 
							simp23r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> -. R .<_ W )  | 
						
						
							| 62 | 
							
								
							 | 
							eqid | 
							 |-  ( 1. ` K ) = ( 1. ` K )  | 
						
						
							| 63 | 
							
								1 2 62 4 5
							 | 
							lhpjat2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 64 | 
							
								18 11 61 63
							 | 
							syl12anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ ( R .\/ W ) ) = ( ( R .\/ S ) ./\ ( 1. ` K ) ) )  | 
						
						
							| 66 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 67 | 
							
								10 66
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> K e. OL )  | 
						
						
							| 68 | 
							
								14 3 62
							 | 
							olm11 | 
							 |-  ( ( K e. OL /\ ( R .\/ S ) e. ( Base ` K ) ) -> ( ( R .\/ S ) ./\ ( 1. ` K ) ) = ( R .\/ S ) )  | 
						
						
							| 69 | 
							
								67 23 68
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ ( 1. ` K ) ) = ( R .\/ S ) )  | 
						
						
							| 70 | 
							
								65 69
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ ( R .\/ W ) ) = ( R .\/ S ) )  | 
						
						
							| 71 | 
							
								60 70
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( R .\/ S ) ./\ W ) ) = ( R .\/ S ) )  | 
						
						
							| 72 | 
							
								71
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ ( R .\/ ( ( R .\/ S ) ./\ W ) ) ) = ( F .\/ ( R .\/ S ) ) )  | 
						
						
							| 73 | 
							
								41 56 72
							 | 
							3eqtr4d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ ( P .\/ Q ) ) = ( F .\/ ( R .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 74 | 
							
								14 2
							 | 
							latj12 | 
							 |-  ( ( K e. Lat /\ ( F e. ( Base ` K ) /\ R e. ( Base ` K ) /\ ( ( R .\/ S ) ./\ W ) e. ( Base ` K ) ) ) -> ( F .\/ ( R .\/ ( ( R .\/ S ) ./\ W ) ) ) = ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 75 | 
							
								17 21 39 28 74
							 | 
							syl13anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( F .\/ ( R .\/ ( ( R .\/ S ) ./\ W ) ) ) = ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 76 | 
							
								73 75
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( S .\/ ( P .\/ Q ) ) = ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 77 | 
							
								37 76
							 | 
							breqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) .<_ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 78 | 
							
								14 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ R e. ( Base ` K ) /\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) e. ( Base ` K ) ) -> ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) e. ( Base ` K ) )  | 
						
						
							| 79 | 
							
								17 39 30 78
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) e. ( Base ` K ) )  | 
						
						
							| 80 | 
							
								14 1 3
							 | 
							latleeqm1 | 
							 |-  ( ( K e. Lat /\ ( P .\/ Q ) e. ( Base ` K ) /\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) e. ( Base ` K ) ) -> ( ( P .\/ Q ) .<_ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) <-> ( ( P .\/ Q ) ./\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( P .\/ Q ) ) )  | 
						
						
							| 81 | 
							
								17 16 79 80
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) .<_ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) <-> ( ( P .\/ Q ) ./\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( P .\/ Q ) ) )  | 
						
						
							| 82 | 
							
								77 81
							 | 
							mpbid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( P .\/ Q ) ./\ ( R .\/ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( P .\/ Q ) )  | 
						
						
							| 83 | 
							
								33 82
							 | 
							eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) ) = ( P .\/ Q ) )  | 
						
						
							| 84 | 
							
								9 83
							 | 
							eqtrid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ Q e. A /\ ( R e. A /\ -. R .<_ W ) ) /\ ( ( S e. A /\ -. S .<_ W ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R .\/ G ) = ( P .\/ Q ) )  |