| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemef50.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemef50.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemef50.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemef50.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemef50.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemef50.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemef50.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemef50.d | 
							 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefs50.e | 
							 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdlemef50.f | 
							 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( ( Q .\/ P ) ./\ W ) = ( ( Q .\/ P ) ./\ W )  | 
						
						
							| 12 | 
							
								
							 | 
							eqid | 
							 |-  ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) = ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							eqid | 
							 |-  ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , [_ u / v ]_ ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) ) .\/ ( a ./\ W ) ) ) ) , a ) ) = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , [_ u / v ]_ ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) ) .\/ ( a ./\ W ) ) ) ) , a ) )  | 
						
						
							| 15 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 14
							 | 
							cdleme50rnlem | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ran F = B )  |