Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemef50.b |
|- B = ( Base ` K ) |
2 |
|
cdlemef50.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemef50.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemef50.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemef50.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemef50.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemef50.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdlemef50.d |
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
9 |
|
cdlemefs50.e |
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) ) |
10 |
|
cdlemef50.f |
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) |
11 |
|
simpl1 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( K e. HL /\ W e. H ) ) |
12 |
|
simprr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
13 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
14 |
2 4 13 5 6
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R ./\ W ) = ( 0. ` K ) ) |
15 |
11 12 14
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R ./\ W ) = ( 0. ` K ) ) |
16 |
|
simprrl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. A ) |
17 |
1 5
|
atbase |
|- ( R e. A -> R e. B ) |
18 |
16 17
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> R e. B ) |
19 |
|
simprl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> P = Q ) |
20 |
10
|
cdleme31id |
|- ( ( R e. B /\ P = Q ) -> ( F ` R ) = R ) |
21 |
18 19 20
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( F ` R ) = R ) |
22 |
21
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( F ` R ) ) = ( R .\/ R ) ) |
23 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> K e. HL ) |
24 |
3 5
|
hlatjidm |
|- ( ( K e. HL /\ R e. A ) -> ( R .\/ R ) = R ) |
25 |
23 16 24
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ R ) = R ) |
26 |
22 25
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( R .\/ ( F ` R ) ) = R ) |
27 |
26
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ ( F ` R ) ) ./\ W ) = ( R ./\ W ) ) |
28 |
|
simpl2 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P e. A /\ -. P .<_ W ) ) |
29 |
2 4 13 5 6
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P ./\ W ) = ( 0. ` K ) ) |
30 |
11 28 29
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P ./\ W ) = ( 0. ` K ) ) |
31 |
15 27 30
|
3eqtr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ ( F ` R ) ) ./\ W ) = ( P ./\ W ) ) |
32 |
|
simpl2l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> P e. A ) |
33 |
3 5
|
hlatjidm |
|- ( ( K e. HL /\ P e. A ) -> ( P .\/ P ) = P ) |
34 |
23 32 33
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ P ) = P ) |
35 |
19
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P .\/ P ) = ( P .\/ Q ) ) |
36 |
34 35
|
eqtr3d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> P = ( P .\/ Q ) ) |
37 |
36
|
oveq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( P ./\ W ) = ( ( P .\/ Q ) ./\ W ) ) |
38 |
31 37
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ ( F ` R ) ) ./\ W ) = ( ( P .\/ Q ) ./\ W ) ) |
39 |
38 7
|
eqtr4di |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P = Q /\ ( R e. A /\ -. R .<_ W ) ) ) -> ( ( R .\/ ( F ` R ) ) ./\ W ) = U ) |