Metamath Proof Explorer


Theorem cdleme51finvtrN

Description: Part of proof of Lemma E in Crawley p. 113. TODO: fix comment. (Contributed by NM, 14-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemef50.b
|- B = ( Base ` K )
cdlemef50.l
|- .<_ = ( le ` K )
cdlemef50.j
|- .\/ = ( join ` K )
cdlemef50.m
|- ./\ = ( meet ` K )
cdlemef50.a
|- A = ( Atoms ` K )
cdlemef50.h
|- H = ( LHyp ` K )
cdlemef50.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemef50.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemefs50.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemef50.f
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
cdleme50ltrn.t
|- T = ( ( LTrn ` K ) ` W )
Assertion cdleme51finvtrN
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> `' F e. T )

Proof

Step Hyp Ref Expression
1 cdlemef50.b
 |-  B = ( Base ` K )
2 cdlemef50.l
 |-  .<_ = ( le ` K )
3 cdlemef50.j
 |-  .\/ = ( join ` K )
4 cdlemef50.m
 |-  ./\ = ( meet ` K )
5 cdlemef50.a
 |-  A = ( Atoms ` K )
6 cdlemef50.h
 |-  H = ( LHyp ` K )
7 cdlemef50.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemef50.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemefs50.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemef50.f
 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
11 cdleme50ltrn.t
 |-  T = ( ( LTrn ` K ) ` W )
12 eqid
 |-  ( ( Q .\/ P ) ./\ W ) = ( ( Q .\/ P ) ./\ W )
13 eqid
 |-  ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) = ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )
14 eqid
 |-  ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) )
15 eqid
 |-  ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , [_ u / v ]_ ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) ) .\/ ( a ./\ W ) ) ) ) , a ) ) = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , [_ u / v ]_ ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) ) .\/ ( a ./\ W ) ) ) ) , a ) )
16 1 2 3 4 5 6 7 8 9 10 12 13 14 15 cdleme51finvN
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> `' F = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , [_ u / v ]_ ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) ) .\/ ( a ./\ W ) ) ) ) , a ) ) )
17 1 2 3 4 5 6 12 13 14 15 11 cdleme50ltrn
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , [_ u / v ]_ ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) ) .\/ ( a ./\ W ) ) ) ) , a ) ) e. T )
18 17 3com23
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = ( ( Q .\/ P ) ./\ ( ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) .\/ ( ( u .\/ v ) ./\ W ) ) ) ) ) , [_ u / v ]_ ( ( v .\/ ( ( Q .\/ P ) ./\ W ) ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) ) ) .\/ ( a ./\ W ) ) ) ) , a ) ) e. T )
19 16 18 eqeltrd
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) -> `' F e. T )