Description: Part of proof of Lemma E in Crawley p. 113. Lemma leading to cdleme7ga and cdleme7 . (Contributed by NM, 7-Jun-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdleme4.l | |- .<_ = ( le ` K ) |
|
cdleme4.j | |- .\/ = ( join ` K ) |
||
cdleme4.m | |- ./\ = ( meet ` K ) |
||
cdleme4.a | |- A = ( Atoms ` K ) |
||
cdleme4.h | |- H = ( LHyp ` K ) |
||
cdleme4.u | |- U = ( ( P .\/ Q ) ./\ W ) |
||
cdleme4.f | |- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
||
cdleme4.g | |- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) |
||
cdleme7.v | |- V = ( ( R .\/ S ) ./\ W ) |
||
Assertion | cdleme7a | |- G = ( ( P .\/ Q ) ./\ ( F .\/ V ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme4.l | |- .<_ = ( le ` K ) |
|
2 | cdleme4.j | |- .\/ = ( join ` K ) |
|
3 | cdleme4.m | |- ./\ = ( meet ` K ) |
|
4 | cdleme4.a | |- A = ( Atoms ` K ) |
|
5 | cdleme4.h | |- H = ( LHyp ` K ) |
|
6 | cdleme4.u | |- U = ( ( P .\/ Q ) ./\ W ) |
|
7 | cdleme4.f | |- F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) |
|
8 | cdleme4.g | |- G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) |
|
9 | cdleme7.v | |- V = ( ( R .\/ S ) ./\ W ) |
|
10 | 9 | oveq2i | |- ( F .\/ V ) = ( F .\/ ( ( R .\/ S ) ./\ W ) ) |
11 | 10 | oveq2i | |- ( ( P .\/ Q ) ./\ ( F .\/ V ) ) = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) ) |
12 | 8 11 | eqtr4i | |- G = ( ( P .\/ Q ) ./\ ( F .\/ V ) ) |