| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme4.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme4.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme4.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme4.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme4.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme4.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 7 | 
							
								
							 | 
							cdleme4.f | 
							 |-  F = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdleme4.g | 
							 |-  G = ( ( P .\/ Q ) ./\ ( F .\/ ( ( R .\/ S ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdleme7.v | 
							 |-  V = ( ( R .\/ S ) ./\ W )  | 
						
						
							| 10 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( R e. A /\ -. R .<_ W ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simp31 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> S e. A )  | 
						
						
							| 13 | 
							
								
							 | 
							simp33 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp32 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) )  | 
						
						
							| 15 | 
							
								
							 | 
							nbrne2 | 
							 |-  ( ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) -> R =/= S )  | 
						
						
							| 16 | 
							
								13 14 15
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> R =/= S )  | 
						
						
							| 17 | 
							
								1 2 3 4 5
							 | 
							lhpat | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ R =/= S ) ) -> ( ( R .\/ S ) ./\ W ) e. A )  | 
						
						
							| 18 | 
							
								10 11 12 16 17
							 | 
							syl112anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ S ) ./\ W ) e. A )  | 
						
						
							| 19 | 
							
								9 18
							 | 
							eqeltrid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ ( P .\/ Q ) /\ R .<_ ( P .\/ Q ) ) ) -> V e. A )  |