| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdleme8.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdleme8.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdleme8.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdleme8.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdleme8.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdleme8.4 | 
							 |-  C = ( ( P .\/ S ) ./\ W )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq2i | 
							 |-  ( P .\/ C ) = ( P .\/ ( ( P .\/ S ) ./\ W ) )  | 
						
						
							| 8 | 
							
								
							 | 
							simp1l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> K e. HL )  | 
						
						
							| 9 | 
							
								
							 | 
							simp2l | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> P e. A )  | 
						
						
							| 10 | 
							
								8
							 | 
							hllatd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> K e. Lat )  | 
						
						
							| 11 | 
							
								
							 | 
							eqid | 
							 |-  ( Base ` K ) = ( Base ` K )  | 
						
						
							| 12 | 
							
								11 4
							 | 
							atbase | 
							 |-  ( P e. A -> P e. ( Base ` K ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> P e. ( Base ` K ) )  | 
						
						
							| 14 | 
							
								11 4
							 | 
							atbase | 
							 |-  ( S e. A -> S e. ( Base ` K ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							3ad2ant3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> S e. ( Base ` K ) )  | 
						
						
							| 16 | 
							
								11 2
							 | 
							latjcl | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> ( P .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 17 | 
							
								10 13 15 16
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ S ) e. ( Base ` K ) )  | 
						
						
							| 18 | 
							
								
							 | 
							simp1r | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> W e. H )  | 
						
						
							| 19 | 
							
								11 5
							 | 
							lhpbase | 
							 |-  ( W e. H -> W e. ( Base ` K ) )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> W e. ( Base ` K ) )  | 
						
						
							| 21 | 
							
								11 1 2
							 | 
							latlej1 | 
							 |-  ( ( K e. Lat /\ P e. ( Base ` K ) /\ S e. ( Base ` K ) ) -> P .<_ ( P .\/ S ) )  | 
						
						
							| 22 | 
							
								10 13 15 21
							 | 
							syl3anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> P .<_ ( P .\/ S ) )  | 
						
						
							| 23 | 
							
								11 1 2 3 4
							 | 
							atmod3i1 | 
							 |-  ( ( K e. HL /\ ( P e. A /\ ( P .\/ S ) e. ( Base ` K ) /\ W e. ( Base ` K ) ) /\ P .<_ ( P .\/ S ) ) -> ( P .\/ ( ( P .\/ S ) ./\ W ) ) = ( ( P .\/ S ) ./\ ( P .\/ W ) ) )  | 
						
						
							| 24 | 
							
								8 9 17 20 22 23
							 | 
							syl131anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ ( ( P .\/ S ) ./\ W ) ) = ( ( P .\/ S ) ./\ ( P .\/ W ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							eqid | 
							 |-  ( 1. ` K ) = ( 1. ` K )  | 
						
						
							| 26 | 
							
								1 2 25 4 5
							 | 
							lhpjat2 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) ) -> ( P .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 27 | 
							
								26
							 | 
							3adant3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ W ) = ( 1. ` K ) )  | 
						
						
							| 28 | 
							
								27
							 | 
							oveq2d | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( ( P .\/ S ) ./\ ( P .\/ W ) ) = ( ( P .\/ S ) ./\ ( 1. ` K ) ) )  | 
						
						
							| 29 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 30 | 
							
								8 29
							 | 
							syl | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> K e. OL )  | 
						
						
							| 31 | 
							
								11 3 25
							 | 
							olm11 | 
							 |-  ( ( K e. OL /\ ( P .\/ S ) e. ( Base ` K ) ) -> ( ( P .\/ S ) ./\ ( 1. ` K ) ) = ( P .\/ S ) )  | 
						
						
							| 32 | 
							
								30 17 31
							 | 
							syl2anc | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( ( P .\/ S ) ./\ ( 1. ` K ) ) = ( P .\/ S ) )  | 
						
						
							| 33 | 
							
								24 28 32
							 | 
							3eqtrd | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ ( ( P .\/ S ) ./\ W ) ) = ( P .\/ S ) )  | 
						
						
							| 34 | 
							
								7 33
							 | 
							eqtrid | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ S e. A ) -> ( P .\/ C ) = ( P .\/ S ) )  |