Metamath Proof Explorer


Theorem cdleme8tN

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. X represents t_1. In their notation, we prove p \/ t_1 = p \/ t. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme8t.l
|- .<_ = ( le ` K )
cdleme8t.j
|- .\/ = ( join ` K )
cdleme8t.m
|- ./\ = ( meet ` K )
cdleme8t.a
|- A = ( Atoms ` K )
cdleme8t.h
|- H = ( LHyp ` K )
cdleme8t.x
|- X = ( ( P .\/ T ) ./\ W )
Assertion cdleme8tN
|- ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ T e. A ) -> ( P .\/ X ) = ( P .\/ T ) )

Proof

Step Hyp Ref Expression
1 cdleme8t.l
 |-  .<_ = ( le ` K )
2 cdleme8t.j
 |-  .\/ = ( join ` K )
3 cdleme8t.m
 |-  ./\ = ( meet ` K )
4 cdleme8t.a
 |-  A = ( Atoms ` K )
5 cdleme8t.h
 |-  H = ( LHyp ` K )
6 cdleme8t.x
 |-  X = ( ( P .\/ T ) ./\ W )
7 1 2 3 4 5 6 cdleme8
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ T e. A ) -> ( P .\/ X ) = ( P .\/ T ) )