Metamath Proof Explorer


Theorem cdleme9tN

Description: Part of proof of Lemma E in Crawley p. 113, 2nd paragraph on p. 114. X and F represent t_1 and f(t) respectively. In their notation, we prove f(t) \/ t_1 = q \/ t_1. (Contributed by NM, 8-Oct-2012) (New usage is discouraged.)

Ref Expression
Hypotheses cdleme9t.l
|- .<_ = ( le ` K )
cdleme9t.j
|- .\/ = ( join ` K )
cdleme9t.m
|- ./\ = ( meet ` K )
cdleme9t.a
|- A = ( Atoms ` K )
cdleme9t.h
|- H = ( LHyp ` K )
cdleme9t.u
|- U = ( ( P .\/ Q ) ./\ W )
cdleme9t.g
|- F = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )
cdleme9t.x
|- X = ( ( P .\/ T ) ./\ W )
Assertion cdleme9tN
|- ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( T e. A /\ -. T .<_ W ) ) /\ -. T .<_ ( P .\/ Q ) ) -> ( F .\/ X ) = ( Q .\/ X ) )

Proof

Step Hyp Ref Expression
1 cdleme9t.l
 |-  .<_ = ( le ` K )
2 cdleme9t.j
 |-  .\/ = ( join ` K )
3 cdleme9t.m
 |-  ./\ = ( meet ` K )
4 cdleme9t.a
 |-  A = ( Atoms ` K )
5 cdleme9t.h
 |-  H = ( LHyp ` K )
6 cdleme9t.u
 |-  U = ( ( P .\/ Q ) ./\ W )
7 cdleme9t.g
 |-  F = ( ( T .\/ U ) ./\ ( Q .\/ ( ( P .\/ T ) ./\ W ) ) )
8 cdleme9t.x
 |-  X = ( ( P .\/ T ) ./\ W )
9 1 2 3 4 5 6 7 8 cdleme9
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ Q e. A /\ ( T e. A /\ -. T .<_ W ) ) /\ -. T .<_ ( P .\/ Q ) ) -> ( F .\/ X ) = ( Q .\/ X ) )