Metamath Proof Explorer


Theorem cdlemefr32fva1

Description: Part of proof of Lemma E in Crawley p. 113. TODO: FIX COMMENT. (Contributed by NM, 29-Mar-2013)

Ref Expression
Hypotheses cdlemefr27.b
|- B = ( Base ` K )
cdlemefr27.l
|- .<_ = ( le ` K )
cdlemefr27.j
|- .\/ = ( join ` K )
cdlemefr27.m
|- ./\ = ( meet ` K )
cdlemefr27.a
|- A = ( Atoms ` K )
cdlemefr27.h
|- H = ( LHyp ` K )
cdlemefr27.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemefr27.c
|- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
cdlemefr27.n
|- N = if ( s .<_ ( P .\/ Q ) , I , C )
cdleme29fr.o
|- O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) )
cdleme29fr.f
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) )
Assertion cdlemefr32fva1
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F ` R ) = [_ R / s ]_ N )

Proof

Step Hyp Ref Expression
1 cdlemefr27.b
 |-  B = ( Base ` K )
2 cdlemefr27.l
 |-  .<_ = ( le ` K )
3 cdlemefr27.j
 |-  .\/ = ( join ` K )
4 cdlemefr27.m
 |-  ./\ = ( meet ` K )
5 cdlemefr27.a
 |-  A = ( Atoms ` K )
6 cdlemefr27.h
 |-  H = ( LHyp ` K )
7 cdlemefr27.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemefr27.c
 |-  C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )
9 cdlemefr27.n
 |-  N = if ( s .<_ ( P .\/ Q ) , I , C )
10 cdleme29fr.o
 |-  O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) )
11 cdleme29fr.f
 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) )
12 breq1
 |-  ( s = R -> ( s .<_ ( P .\/ Q ) <-> R .<_ ( P .\/ Q ) ) )
13 12 notbid
 |-  ( s = R -> ( -. s .<_ ( P .\/ Q ) <-> -. R .<_ ( P .\/ Q ) ) )
14 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> ( K e. HL /\ W e. H ) )
15 simp12l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> P e. A )
16 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> Q e. A )
17 simp3l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> s e. A )
18 simp3rr
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> -. s .<_ ( P .\/ Q ) )
19 simp2
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> P =/= Q )
20 1 2 3 4 5 6 7 8 9 cdlemefr27cl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ P e. A /\ Q e. A ) /\ ( s e. A /\ -. s .<_ ( P .\/ Q ) /\ P =/= Q ) ) -> N e. B )
21 14 15 16 17 18 19 20 syl33anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ -. s .<_ ( P .\/ Q ) ) ) ) -> N e. B )
22 1 2 3 4 5 6 7 8 9 cdlemefr32snb
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N e. B )
23 1 2 3 4 5 6 13 21 22 10 11 cdlemefrs32fva1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F ` R ) = [_ R / s ]_ N )