| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemefr27.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemefr27.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemefr27.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemefr27.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemefr27.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemefr27.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemefr27.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemefr27.c | 
							 |-  C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefr27.n | 
							 |-  N = if ( s .<_ ( P .\/ Q ) , I , C )  | 
						
						
							| 10 | 
							
								
							 | 
							simp11 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 11 | 
							
								
							 | 
							simp12 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( P e. A /\ -. P .<_ W ) )  | 
						
						
							| 12 | 
							
								
							 | 
							simp13 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( Q e. A /\ -. Q .<_ W ) )  | 
						
						
							| 13 | 
							
								
							 | 
							simp2r | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( R e. A /\ -. R .<_ W ) )  | 
						
						
							| 14 | 
							
								
							 | 
							simp2l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> P =/= Q )  | 
						
						
							| 15 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> -. R .<_ ( P .\/ Q ) )  | 
						
						
							| 16 | 
							
								
							 | 
							eqid | 
							 |-  ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) )  | 
						
						
							| 17 | 
							
								2 3 4 5 6 7 16
							 | 
							cdleme3fa | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) e. A )  | 
						
						
							| 18 | 
							
								2 3 4 5 6 7 16
							 | 
							cdleme3 | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> -. ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) .<_ W )  | 
						
						
							| 19 | 
							
								17 18
							 | 
							jca | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) /\ ( R e. A /\ -. R .<_ W ) ) /\ ( P =/= Q /\ -. R .<_ ( P .\/ Q ) ) ) -> ( ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) e. A /\ -. ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) .<_ W ) )  | 
						
						
							| 20 | 
							
								10 11 12 13 14 15 19
							 | 
							syl132anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) e. A /\ -. ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) .<_ W ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp2rl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> R e. A )  | 
						
						
							| 22 | 
							
								8 9 16
							 | 
							cdleme31sn2 | 
							 |-  ( ( R e. A /\ -. R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 23 | 
							
								21 15 22
							 | 
							syl2anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N = ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							eleq1d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A <-> ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) e. A ) )  | 
						
						
							| 25 | 
							
								23
							 | 
							breq1d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N .<_ W <-> ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) .<_ W ) )  | 
						
						
							| 26 | 
							
								25
							 | 
							notbid | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( -. [_ R / s ]_ N .<_ W <-> -. ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) .<_ W ) )  | 
						
						
							| 27 | 
							
								24 26
							 | 
							anbi12d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) <-> ( ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) e. A /\ -. ( ( R .\/ U ) ./\ ( Q .\/ ( ( P .\/ R ) ./\ W ) ) ) .<_ W ) ) )  | 
						
						
							| 28 | 
							
								20 27
							 | 
							mpbird | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) )  |