Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefr27.b |
|- B = ( Base ` K ) |
2 |
|
cdlemefr27.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemefr27.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemefr27.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemefr27.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemefr27.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemefr27.u |
|- U = ( ( P .\/ Q ) ./\ W ) |
8 |
|
cdlemefr27.c |
|- C = ( ( s .\/ U ) ./\ ( Q .\/ ( ( P .\/ s ) ./\ W ) ) ) |
9 |
|
cdlemefr27.n |
|- N = if ( s .<_ ( P .\/ Q ) , I , C ) |
10 |
1 2 3 4 5 6 7 8 9
|
cdlemefr32sn2aw |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) ) |
11 |
10
|
simpld |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N e. A ) |
12 |
1 5
|
atbase |
|- ( [_ R / s ]_ N e. A -> [_ R / s ]_ N e. B ) |
13 |
11 12
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N e. B ) |