Description: Value of f(r) when r is an atom not under pq, using very compact hypotheses. TODO: FIX COMMENT. (Contributed by NM, 1-Apr-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemef45.b | |- B = ( Base ` K ) |
|
cdlemef45.l | |- .<_ = ( le ` K ) |
||
cdlemef45.j | |- .\/ = ( join ` K ) |
||
cdlemef45.m | |- ./\ = ( meet ` K ) |
||
cdlemef45.a | |- A = ( Atoms ` K ) |
||
cdlemef45.h | |- H = ( LHyp ` K ) |
||
cdlemef45.u | |- U = ( ( P .\/ Q ) ./\ W ) |
||
cdlemef45.d | |- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
||
cdlemef45.f | |- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) |
||
Assertion | cdlemefr45 | |- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F ` R ) = [_ R / t ]_ D ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemef45.b | |- B = ( Base ` K ) |
|
2 | cdlemef45.l | |- .<_ = ( le ` K ) |
|
3 | cdlemef45.j | |- .\/ = ( join ` K ) |
|
4 | cdlemef45.m | |- ./\ = ( meet ` K ) |
|
5 | cdlemef45.a | |- A = ( Atoms ` K ) |
|
6 | cdlemef45.h | |- H = ( LHyp ` K ) |
|
7 | cdlemef45.u | |- U = ( ( P .\/ Q ) ./\ W ) |
|
8 | cdlemef45.d | |- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) ) |
|
9 | cdlemef45.f | |- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) ) |
|
10 | eqid | |- ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) |
|
11 | 1 2 3 4 5 6 7 8 10 9 | cdlemefr44 | |- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ -. R .<_ ( P .\/ Q ) ) -> ( F ` R ) = [_ R / t ]_ D ) |