Step |
Hyp |
Ref |
Expression |
1 |
|
cdlemefrs27.b |
|- B = ( Base ` K ) |
2 |
|
cdlemefrs27.l |
|- .<_ = ( le ` K ) |
3 |
|
cdlemefrs27.j |
|- .\/ = ( join ` K ) |
4 |
|
cdlemefrs27.m |
|- ./\ = ( meet ` K ) |
5 |
|
cdlemefrs27.a |
|- A = ( Atoms ` K ) |
6 |
|
cdlemefrs27.h |
|- H = ( LHyp ` K ) |
7 |
|
cdlemefrs27.eq |
|- ( s = R -> ( ph <-> ps ) ) |
8 |
|
cdlemefrs27.nb |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> N e. B ) |
9 |
|
df-ral |
|- ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> A. s ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
10 |
|
anass |
|- ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( s e. A /\ ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) ) ) |
11 |
10
|
imbi1i |
|- ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( ( s e. A /\ ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) ) -> z = ( N .\/ ( R ./\ W ) ) ) ) |
12 |
|
impexp |
|- ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
13 |
|
impexp |
|- ( ( ( s e. A /\ ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
14 |
11 12 13
|
3bitr3ri |
|- ( ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) ) |
15 |
|
simpl11 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( K e. HL /\ W e. H ) ) |
16 |
|
simpl2r |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( R e. A /\ -. R .<_ W ) ) |
17 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
18 |
2 4 17 5 6
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R ./\ W ) = ( 0. ` K ) ) |
19 |
15 16 18
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( R ./\ W ) = ( 0. ` K ) ) |
20 |
19
|
oveq2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( s .\/ ( R ./\ W ) ) = ( s .\/ ( 0. ` K ) ) ) |
21 |
|
simp11l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> K e. HL ) |
22 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
23 |
21 22
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> K e. OL ) |
24 |
23
|
adantr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> K e. OL ) |
25 |
|
simprl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> s e. A ) |
26 |
1 5
|
atbase |
|- ( s e. A -> s e. B ) |
27 |
25 26
|
syl |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> s e. B ) |
28 |
1 3 17
|
olj01 |
|- ( ( K e. OL /\ s e. B ) -> ( s .\/ ( 0. ` K ) ) = s ) |
29 |
24 27 28
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( s .\/ ( 0. ` K ) ) = s ) |
30 |
20 29
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( s .\/ ( R ./\ W ) ) = s ) |
31 |
30
|
eqeq1d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( ( s .\/ ( R ./\ W ) ) = R <-> s = R ) ) |
32 |
19
|
oveq2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( N .\/ ( R ./\ W ) ) = ( N .\/ ( 0. ` K ) ) ) |
33 |
|
simpl1 |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) ) |
34 |
|
simpl2l |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> P =/= Q ) |
35 |
|
simprr |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( -. s .<_ W /\ ph ) ) |
36 |
33 34 25 35 8
|
syl112anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> N e. B ) |
37 |
1 3 17
|
olj01 |
|- ( ( K e. OL /\ N e. B ) -> ( N .\/ ( 0. ` K ) ) = N ) |
38 |
24 36 37
|
syl2anc |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( N .\/ ( 0. ` K ) ) = N ) |
39 |
32 38
|
eqtrd |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( N .\/ ( R ./\ W ) ) = N ) |
40 |
39
|
eqeq2d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( z = ( N .\/ ( R ./\ W ) ) <-> z = N ) ) |
41 |
31 40
|
imbi12d |
|- ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( s = R -> z = N ) ) ) |
42 |
41
|
pm5.74da |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( s = R -> z = N ) ) ) ) |
43 |
|
impexp |
|- ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) -> z = N ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( s = R -> z = N ) ) ) |
44 |
|
simp2rl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> R e. A ) |
45 |
|
simp2rr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> -. R .<_ W ) |
46 |
|
simp3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ps ) |
47 |
|
eleq1 |
|- ( s = R -> ( s e. A <-> R e. A ) ) |
48 |
|
breq1 |
|- ( s = R -> ( s .<_ W <-> R .<_ W ) ) |
49 |
48
|
notbid |
|- ( s = R -> ( -. s .<_ W <-> -. R .<_ W ) ) |
50 |
49 7
|
anbi12d |
|- ( s = R -> ( ( -. s .<_ W /\ ph ) <-> ( -. R .<_ W /\ ps ) ) ) |
51 |
47 50
|
anbi12d |
|- ( s = R -> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) <-> ( R e. A /\ ( -. R .<_ W /\ ps ) ) ) ) |
52 |
51
|
biimprcd |
|- ( ( R e. A /\ ( -. R .<_ W /\ ps ) ) -> ( s = R -> ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) ) |
53 |
44 45 46 52
|
syl12anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( s = R -> ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) ) |
54 |
53
|
pm4.71rd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( s = R <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) ) ) |
55 |
54
|
imbi1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( s = R -> z = N ) <-> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) -> z = N ) ) ) |
56 |
|
eqcom |
|- ( z = N <-> N = z ) |
57 |
56
|
imbi2i |
|- ( ( s = R -> z = N ) <-> ( s = R -> N = z ) ) |
58 |
55 57
|
bitr3di |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) -> z = N ) <-> ( s = R -> N = z ) ) ) |
59 |
43 58
|
bitr3id |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( s = R -> z = N ) ) <-> ( s = R -> N = z ) ) ) |
60 |
42 59
|
bitrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( s = R -> N = z ) ) ) |
61 |
14 60
|
syl5bb |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( s = R -> N = z ) ) ) |
62 |
61
|
albidv |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> A. s ( s = R -> N = z ) ) ) |
63 |
9 62
|
syl5bb |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> A. s ( s = R -> N = z ) ) ) |
64 |
|
nfcv |
|- F/_ s z |
65 |
64
|
csbiebg |
|- ( R e. A -> ( A. s ( s = R -> N = z ) <-> [_ R / s ]_ N = z ) ) |
66 |
44 65
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s ( s = R -> N = z ) <-> [_ R / s ]_ N = z ) ) |
67 |
|
eqcom |
|- ( [_ R / s ]_ N = z <-> z = [_ R / s ]_ N ) |
68 |
66 67
|
bitrdi |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s ( s = R -> N = z ) <-> z = [_ R / s ]_ N ) ) |
69 |
63 68
|
bitrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> z = [_ R / s ]_ N ) ) |