| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemefrs27.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemefrs27.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemefrs27.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemefrs27.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemefrs27.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemefrs27.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemefrs27.eq | 
							 |-  ( s = R -> ( ph <-> ps ) )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemefrs27.nb | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> N e. B )  | 
						
						
							| 9 | 
							
								
							 | 
							df-ral | 
							 |-  ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> A. s ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							anass | 
							 |-  ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( s e. A /\ ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							imbi1i | 
							 |-  ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( ( s e. A /\ ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) ) -> z = ( N .\/ ( R ./\ W ) ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							impexp | 
							 |-  ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							impexp | 
							 |-  ( ( ( s e. A /\ ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) )  | 
						
						
							| 14 | 
							
								11 12 13
							 | 
							3bitr3ri | 
							 |-  ( ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simpl11 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( K e. HL /\ W e. H ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simpl2r | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( R e. A /\ -. R .<_ W ) )  | 
						
						
							| 17 | 
							
								
							 | 
							eqid | 
							 |-  ( 0. ` K ) = ( 0. ` K )  | 
						
						
							| 18 | 
							
								2 4 17 5 6
							 | 
							lhpmat | 
							 |-  ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R ./\ W ) = ( 0. ` K ) )  | 
						
						
							| 19 | 
							
								15 16 18
							 | 
							syl2anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( R ./\ W ) = ( 0. ` K ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq2d | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( s .\/ ( R ./\ W ) ) = ( s .\/ ( 0. ` K ) ) )  | 
						
						
							| 21 | 
							
								
							 | 
							simp11l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> K e. HL )  | 
						
						
							| 22 | 
							
								
							 | 
							hlol | 
							 |-  ( K e. HL -> K e. OL )  | 
						
						
							| 23 | 
							
								21 22
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> K e. OL )  | 
						
						
							| 24 | 
							
								23
							 | 
							adantr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> K e. OL )  | 
						
						
							| 25 | 
							
								
							 | 
							simprl | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> s e. A )  | 
						
						
							| 26 | 
							
								1 5
							 | 
							atbase | 
							 |-  ( s e. A -> s e. B )  | 
						
						
							| 27 | 
							
								25 26
							 | 
							syl | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> s e. B )  | 
						
						
							| 28 | 
							
								1 3 17
							 | 
							olj01 | 
							 |-  ( ( K e. OL /\ s e. B ) -> ( s .\/ ( 0. ` K ) ) = s )  | 
						
						
							| 29 | 
							
								24 27 28
							 | 
							syl2anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( s .\/ ( 0. ` K ) ) = s )  | 
						
						
							| 30 | 
							
								20 29
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( s .\/ ( R ./\ W ) ) = s )  | 
						
						
							| 31 | 
							
								30
							 | 
							eqeq1d | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( ( s .\/ ( R ./\ W ) ) = R <-> s = R ) )  | 
						
						
							| 32 | 
							
								19
							 | 
							oveq2d | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( N .\/ ( R ./\ W ) ) = ( N .\/ ( 0. ` K ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpl1 | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simpl2l | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> P =/= Q )  | 
						
						
							| 35 | 
							
								
							 | 
							simprr | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( -. s .<_ W /\ ph ) )  | 
						
						
							| 36 | 
							
								33 34 25 35 8
							 | 
							syl112anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> N e. B )  | 
						
						
							| 37 | 
							
								1 3 17
							 | 
							olj01 | 
							 |-  ( ( K e. OL /\ N e. B ) -> ( N .\/ ( 0. ` K ) ) = N )  | 
						
						
							| 38 | 
							
								24 36 37
							 | 
							syl2anc | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( N .\/ ( 0. ` K ) ) = N )  | 
						
						
							| 39 | 
							
								32 38
							 | 
							eqtrd | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( N .\/ ( R ./\ W ) ) = N )  | 
						
						
							| 40 | 
							
								39
							 | 
							eqeq2d | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( z = ( N .\/ ( R ./\ W ) ) <-> z = N ) )  | 
						
						
							| 41 | 
							
								31 40
							 | 
							imbi12d | 
							 |-  ( ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) /\ ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) -> ( ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) <-> ( s = R -> z = N ) ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							pm5.74da | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( s = R -> z = N ) ) ) )  | 
						
						
							| 43 | 
							
								
							 | 
							impexp | 
							 |-  ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) -> z = N ) <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( s = R -> z = N ) ) )  | 
						
						
							| 44 | 
							
								
							 | 
							simp2rl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> R e. A )  | 
						
						
							| 45 | 
							
								
							 | 
							simp2rr | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> -. R .<_ W )  | 
						
						
							| 46 | 
							
								
							 | 
							simp3 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ps )  | 
						
						
							| 47 | 
							
								
							 | 
							eleq1 | 
							 |-  ( s = R -> ( s e. A <-> R e. A ) )  | 
						
						
							| 48 | 
							
								
							 | 
							breq1 | 
							 |-  ( s = R -> ( s .<_ W <-> R .<_ W ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							notbid | 
							 |-  ( s = R -> ( -. s .<_ W <-> -. R .<_ W ) )  | 
						
						
							| 50 | 
							
								49 7
							 | 
							anbi12d | 
							 |-  ( s = R -> ( ( -. s .<_ W /\ ph ) <-> ( -. R .<_ W /\ ps ) ) )  | 
						
						
							| 51 | 
							
								47 50
							 | 
							anbi12d | 
							 |-  ( s = R -> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) <-> ( R e. A /\ ( -. R .<_ W /\ ps ) ) ) )  | 
						
						
							| 52 | 
							
								51
							 | 
							biimprcd | 
							 |-  ( ( R e. A /\ ( -. R .<_ W /\ ps ) ) -> ( s = R -> ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) )  | 
						
						
							| 53 | 
							
								44 45 46 52
							 | 
							syl12anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( s = R -> ( s e. A /\ ( -. s .<_ W /\ ph ) ) ) )  | 
						
						
							| 54 | 
							
								53
							 | 
							pm4.71rd | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( s = R <-> ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) ) )  | 
						
						
							| 55 | 
							
								54
							 | 
							imbi1d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( s = R -> z = N ) <-> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) -> z = N ) ) )  | 
						
						
							| 56 | 
							
								
							 | 
							eqcom | 
							 |-  ( z = N <-> N = z )  | 
						
						
							| 57 | 
							
								56
							 | 
							imbi2i | 
							 |-  ( ( s = R -> z = N ) <-> ( s = R -> N = z ) )  | 
						
						
							| 58 | 
							
								55 57
							 | 
							bitr3di | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) /\ s = R ) -> z = N ) <-> ( s = R -> N = z ) ) )  | 
						
						
							| 59 | 
							
								43 58
							 | 
							bitr3id | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( s = R -> z = N ) ) <-> ( s = R -> N = z ) ) )  | 
						
						
							| 60 | 
							
								42 59
							 | 
							bitrd | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( ( s e. A /\ ( -. s .<_ W /\ ph ) ) -> ( ( s .\/ ( R ./\ W ) ) = R -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( s = R -> N = z ) ) )  | 
						
						
							| 61 | 
							
								14 60
							 | 
							bitrid | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> ( s = R -> N = z ) ) )  | 
						
						
							| 62 | 
							
								61
							 | 
							albidv | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s ( s e. A -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) ) <-> A. s ( s = R -> N = z ) ) )  | 
						
						
							| 63 | 
							
								9 62
							 | 
							bitrid | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> A. s ( s = R -> N = z ) ) )  | 
						
						
							| 64 | 
							
								
							 | 
							nfcv | 
							 |-  F/_ s z  | 
						
						
							| 65 | 
							
								64
							 | 
							csbiebg | 
							 |-  ( R e. A -> ( A. s ( s = R -> N = z ) <-> [_ R / s ]_ N = z ) )  | 
						
						
							| 66 | 
							
								44 65
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s ( s = R -> N = z ) <-> [_ R / s ]_ N = z ) )  | 
						
						
							| 67 | 
							
								
							 | 
							eqcom | 
							 |-  ( [_ R / s ]_ N = z <-> z = [_ R / s ]_ N )  | 
						
						
							| 68 | 
							
								66 67
							 | 
							bitrdi | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s ( s = R -> N = z ) <-> z = [_ R / s ]_ N ) )  | 
						
						
							| 69 | 
							
								63 68
							 | 
							bitrd | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ ps ) -> ( A. s e. A ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) -> z = ( N .\/ ( R ./\ W ) ) ) <-> z = [_ R / s ]_ N ) )  |