| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemefrs29.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemefrs29.l |
|- .<_ = ( le ` K ) |
| 3 |
|
cdlemefrs29.j |
|- .\/ = ( join ` K ) |
| 4 |
|
cdlemefrs29.m |
|- ./\ = ( meet ` K ) |
| 5 |
|
cdlemefrs29.a |
|- A = ( Atoms ` K ) |
| 6 |
|
cdlemefrs29.h |
|- H = ( LHyp ` K ) |
| 7 |
|
cdlemefrs29.eq |
|- ( s = R -> ( ph <-> ps ) ) |
| 8 |
|
anass |
|- ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( -. s .<_ W /\ ( ph /\ ( s .\/ ( R ./\ W ) ) = R ) ) ) |
| 9 |
|
simpl3 |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ps ) |
| 10 |
7
|
pm5.32ri |
|- ( ( ph /\ s = R ) <-> ( ps /\ s = R ) ) |
| 11 |
10
|
baibr |
|- ( ps -> ( s = R <-> ( ph /\ s = R ) ) ) |
| 12 |
9 11
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( s = R <-> ( ph /\ s = R ) ) ) |
| 13 |
|
eqid |
|- ( 0. ` K ) = ( 0. ` K ) |
| 14 |
2 4 13 5 6
|
lhpmat |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( R ./\ W ) = ( 0. ` K ) ) |
| 15 |
14
|
3adant3 |
|- ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) -> ( R ./\ W ) = ( 0. ` K ) ) |
| 16 |
15
|
adantr |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( R ./\ W ) = ( 0. ` K ) ) |
| 17 |
16
|
oveq2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( s .\/ ( R ./\ W ) ) = ( s .\/ ( 0. ` K ) ) ) |
| 18 |
|
simpl1l |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> K e. HL ) |
| 19 |
|
hlol |
|- ( K e. HL -> K e. OL ) |
| 20 |
18 19
|
syl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> K e. OL ) |
| 21 |
1 5
|
atbase |
|- ( s e. A -> s e. B ) |
| 22 |
21
|
adantl |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> s e. B ) |
| 23 |
1 3 13
|
olj01 |
|- ( ( K e. OL /\ s e. B ) -> ( s .\/ ( 0. ` K ) ) = s ) |
| 24 |
20 22 23
|
syl2anc |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( s .\/ ( 0. ` K ) ) = s ) |
| 25 |
17 24
|
eqtrd |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( s .\/ ( R ./\ W ) ) = s ) |
| 26 |
25
|
eqeq1d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( ( s .\/ ( R ./\ W ) ) = R <-> s = R ) ) |
| 27 |
26
|
anbi2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( ( ph /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( ph /\ s = R ) ) ) |
| 28 |
12 26 27
|
3bitr4d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( ( s .\/ ( R ./\ W ) ) = R <-> ( ph /\ ( s .\/ ( R ./\ W ) ) = R ) ) ) |
| 29 |
28
|
anbi2d |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( -. s .<_ W /\ ( ph /\ ( s .\/ ( R ./\ W ) ) = R ) ) ) ) |
| 30 |
8 29
|
bitr4id |
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ ps ) /\ s e. A ) -> ( ( ( -. s .<_ W /\ ph ) /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) ) ) |