Metamath Proof Explorer


Theorem cdlemefs29pre00N

Description: FIX COMMENT. TODO: see if this is the optimal utility theorem using lhpmat . (Contributed by NM, 27-Mar-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemefs29.b
|- B = ( Base ` K )
cdlemefs29.l
|- .<_ = ( le ` K )
cdlemefs29.j
|- .\/ = ( join ` K )
cdlemefs29.m
|- ./\ = ( meet ` K )
cdlemefs29.a
|- A = ( Atoms ` K )
cdlemefs29.h
|- H = ( LHyp ` K )
Assertion cdlemefs29pre00N
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ R .<_ ( P .\/ Q ) ) /\ s e. A ) -> ( ( ( -. s .<_ W /\ s .<_ ( P .\/ Q ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) ) )

Proof

Step Hyp Ref Expression
1 cdlemefs29.b
 |-  B = ( Base ` K )
2 cdlemefs29.l
 |-  .<_ = ( le ` K )
3 cdlemefs29.j
 |-  .\/ = ( join ` K )
4 cdlemefs29.m
 |-  ./\ = ( meet ` K )
5 cdlemefs29.a
 |-  A = ( Atoms ` K )
6 cdlemefs29.h
 |-  H = ( LHyp ` K )
7 breq1
 |-  ( s = R -> ( s .<_ ( P .\/ Q ) <-> R .<_ ( P .\/ Q ) ) )
8 1 2 3 4 5 6 7 cdlemefrs29pre00
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( R e. A /\ -. R .<_ W ) /\ R .<_ ( P .\/ Q ) ) /\ s e. A ) -> ( ( ( -. s .<_ W /\ s .<_ ( P .\/ Q ) ) /\ ( s .\/ ( R ./\ W ) ) = R ) <-> ( -. s .<_ W /\ ( s .\/ ( R ./\ W ) ) = R ) ) )