| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemefs32.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemefs32.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemefs32.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemefs32.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemefs32.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemefs32.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemefs32.u | 
							 |-  U = ( ( P .\/ Q ) ./\ W )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemefs32.d | 
							 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefs32.e | 
							 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdlemefs32.i | 
							 |-  I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) )  | 
						
						
							| 11 | 
							
								
							 | 
							cdlemefs32.n | 
							 |-  N = if ( s .<_ ( P .\/ Q ) , I , C )  | 
						
						
							| 12 | 
							
								
							 | 
							cdleme29fs.o | 
							 |-  O = ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( N .\/ ( x ./\ W ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							cdleme29fs.f | 
							 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , O , x ) )  | 
						
						
							| 14 | 
							
								
							 | 
							breq1 | 
							 |-  ( s = R -> ( s .<_ ( P .\/ Q ) <-> R .<_ ( P .\/ Q ) ) )  | 
						
						
							| 15 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ s .<_ ( P .\/ Q ) ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							simp3l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ s .<_ ( P .\/ Q ) ) ) ) -> s e. A )  | 
						
						
							| 17 | 
							
								
							 | 
							simp3rl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ s .<_ ( P .\/ Q ) ) ) ) -> -. s .<_ W )  | 
						
						
							| 18 | 
							
								16 17
							 | 
							jca | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ s .<_ ( P .\/ Q ) ) ) ) -> ( s e. A /\ -. s .<_ W ) )  | 
						
						
							| 19 | 
							
								
							 | 
							simp3rr | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ s .<_ ( P .\/ Q ) ) ) ) -> s .<_ ( P .\/ Q ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp2 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ s .<_ ( P .\/ Q ) ) ) ) -> P =/= Q )  | 
						
						
							| 21 | 
							
								1 2 3 4 5 6 7 8 9 10 11
							 | 
							cdlemefs27cl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( ( s e. A /\ -. s .<_ W ) /\ s .<_ ( P .\/ Q ) /\ P =/= Q ) ) -> N e. B )  | 
						
						
							| 22 | 
							
								15 18 19 20 21
							 | 
							syl13anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ P =/= Q /\ ( s e. A /\ ( -. s .<_ W /\ s .<_ ( P .\/ Q ) ) ) ) -> N e. B )  | 
						
						
							| 23 | 
							
								1 2 3 4 5 6 7 8 9 10 11
							 | 
							cdlemefs32snb | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N e. B )  | 
						
						
							| 24 | 
							
								1 2 3 4 5 6 14 22 23 12 13
							 | 
							cdlemefrs32fva1 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( F ` R ) = [_ R / s ]_ N )  |