Metamath Proof Explorer


Theorem cdlemefs32snb

Description: Show closure of [_ R / s ]_ N . (Contributed by NM, 24-Mar-2013)

Ref Expression
Hypotheses cdlemefs32.b
|- B = ( Base ` K )
cdlemefs32.l
|- .<_ = ( le ` K )
cdlemefs32.j
|- .\/ = ( join ` K )
cdlemefs32.m
|- ./\ = ( meet ` K )
cdlemefs32.a
|- A = ( Atoms ` K )
cdlemefs32.h
|- H = ( LHyp ` K )
cdlemefs32.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemefs32.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemefs32.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemefs32.i
|- I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) )
cdlemefs32.n
|- N = if ( s .<_ ( P .\/ Q ) , I , C )
Assertion cdlemefs32snb
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N e. B )

Proof

Step Hyp Ref Expression
1 cdlemefs32.b
 |-  B = ( Base ` K )
2 cdlemefs32.l
 |-  .<_ = ( le ` K )
3 cdlemefs32.j
 |-  .\/ = ( join ` K )
4 cdlemefs32.m
 |-  ./\ = ( meet ` K )
5 cdlemefs32.a
 |-  A = ( Atoms ` K )
6 cdlemefs32.h
 |-  H = ( LHyp ` K )
7 cdlemefs32.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemefs32.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemefs32.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemefs32.i
 |-  I = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) )
11 cdlemefs32.n
 |-  N = if ( s .<_ ( P .\/ Q ) , I , C )
12 eqid
 |-  ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) )
13 eqid
 |-  ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) ) ) ) = ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = ( ( P .\/ Q ) ./\ ( D .\/ ( ( R .\/ t ) ./\ W ) ) ) ) )
14 1 2 3 4 5 6 7 8 9 10 11 12 13 cdlemefs32sn1aw
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( [_ R / s ]_ N e. A /\ -. [_ R / s ]_ N .<_ W ) )
15 14 simpld
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N e. A )
16 1 5 atbase
 |-  ( [_ R / s ]_ N e. A -> [_ R / s ]_ N e. B )
17 15 16 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> [_ R / s ]_ N e. B )