Metamath Proof Explorer


Theorem cdlemeg46req

Description: TODO FIX COMMENT r = (v_1 \/ g(s)) p. 116 3rd line. (Contributed by NM, 3-Apr-2013)

Ref Expression
Hypotheses cdlemef46g.b
|- B = ( Base ` K )
cdlemef46g.l
|- .<_ = ( le ` K )
cdlemef46g.j
|- .\/ = ( join ` K )
cdlemef46g.m
|- ./\ = ( meet ` K )
cdlemef46g.a
|- A = ( Atoms ` K )
cdlemef46g.h
|- H = ( LHyp ` K )
cdlemef46g.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemef46g.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemefs46g.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemef46g.f
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
cdlemef46.v
|- V = ( ( Q .\/ P ) ./\ W )
cdlemef46.n
|- N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )
cdlemefs46.o
|- O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) )
cdlemef46.g
|- G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) )
cdlemeg46.y
|- Y = ( ( R .\/ ( G ` S ) ) ./\ W )
cdlemeg46.x
|- X = ( ( ( F ` R ) .\/ S ) ./\ W )
Assertion cdlemeg46req
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R = ( ( P .\/ Q ) ./\ ( ( G ` S ) .\/ X ) ) )

Proof

Step Hyp Ref Expression
1 cdlemef46g.b
 |-  B = ( Base ` K )
2 cdlemef46g.l
 |-  .<_ = ( le ` K )
3 cdlemef46g.j
 |-  .\/ = ( join ` K )
4 cdlemef46g.m
 |-  ./\ = ( meet ` K )
5 cdlemef46g.a
 |-  A = ( Atoms ` K )
6 cdlemef46g.h
 |-  H = ( LHyp ` K )
7 cdlemef46g.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemef46g.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemefs46g.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemef46g.f
 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
11 cdlemef46.v
 |-  V = ( ( Q .\/ P ) ./\ W )
12 cdlemef46.n
 |-  N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )
13 cdlemefs46.o
 |-  O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) )
14 cdlemef46.g
 |-  G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) )
15 cdlemeg46.y
 |-  Y = ( ( R .\/ ( G ` S ) ) ./\ W )
16 cdlemeg46.x
 |-  X = ( ( ( F ` R ) .\/ S ) ./\ W )
17 simp11l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. HL )
18 simp12l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> P e. A )
19 simp13l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> Q e. A )
20 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= Q )
21 eqid
 |-  ( LLines ` K ) = ( LLines ` K )
22 3 5 21 llni2
 |-  ( ( ( K e. HL /\ P e. A /\ Q e. A ) /\ P =/= Q ) -> ( P .\/ Q ) e. ( LLines ` K ) )
23 17 18 19 20 22 syl31anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) e. ( LLines ` K ) )
24 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
25 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) )
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdlemeg46fvaw
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( S e. A /\ -. S .<_ W ) /\ P =/= Q ) -> ( ( G ` S ) e. A /\ -. ( G ` S ) .<_ W ) )
27 24 25 20 26 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( G ` S ) e. A /\ -. ( G ` S ) .<_ W ) )
28 27 simpld
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` S ) e. A )
29 simp11
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( K e. HL /\ W e. H ) )
30 simp22
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R e. A /\ -. R .<_ W ) )
31 1 2 3 4 5 6 7 8 9 10 cdleme46fvaw
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( R e. A /\ -. R .<_ W ) ) -> ( ( F ` R ) e. A /\ -. ( F ` R ) .<_ W ) )
32 24 30 31 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( F ` R ) e. A /\ -. ( F ` R ) .<_ W ) )
33 simp23l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S e. A )
34 simp3l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R .<_ ( P .\/ Q ) )
35 1 2 3 4 5 6 7 8 9 10 cdleme46fsvlpq
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) ) /\ R .<_ ( P .\/ Q ) ) -> ( F ` R ) .<_ ( P .\/ Q ) )
36 24 20 30 34 35 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( F ` R ) .<_ ( P .\/ Q ) )
37 simp3r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) )
38 nbrne2
 |-  ( ( ( F ` R ) .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) -> ( F ` R ) =/= S )
39 36 37 38 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( F ` R ) =/= S )
40 2 3 4 5 6 16 lhpat2
 |-  ( ( ( K e. HL /\ W e. H ) /\ ( ( F ` R ) e. A /\ -. ( F ` R ) .<_ W ) /\ ( S e. A /\ ( F ` R ) =/= S ) ) -> X e. A )
41 29 32 33 39 40 syl112anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> X e. A )
42 17 hllatd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> K e. Lat )
43 32 simpld
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( F ` R ) e. A )
44 1 3 5 hlatjcl
 |-  ( ( K e. HL /\ ( F ` R ) e. A /\ S e. A ) -> ( ( F ` R ) .\/ S ) e. B )
45 17 43 33 44 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( F ` R ) .\/ S ) e. B )
46 simp11r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> W e. H )
47 1 6 lhpbase
 |-  ( W e. H -> W e. B )
48 46 47 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> W e. B )
49 1 2 4 latmle2
 |-  ( ( K e. Lat /\ ( ( F ` R ) .\/ S ) e. B /\ W e. B ) -> ( ( ( F ` R ) .\/ S ) ./\ W ) .<_ W )
50 42 45 48 49 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( ( F ` R ) .\/ S ) ./\ W ) .<_ W )
51 16 50 eqbrtrid
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> X .<_ W )
52 27 simprd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. ( G ` S ) .<_ W )
53 nbrne2
 |-  ( ( X .<_ W /\ -. ( G ` S ) .<_ W ) -> X =/= ( G ` S ) )
54 51 52 53 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> X =/= ( G ` S ) )
55 54 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` S ) =/= X )
56 3 5 21 llni2
 |-  ( ( ( K e. HL /\ ( G ` S ) e. A /\ X e. A ) /\ ( G ` S ) =/= X ) -> ( ( G ` S ) .\/ X ) e. ( LLines ` K ) )
57 17 28 41 55 56 syl31anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( G ` S ) .\/ X ) e. ( LLines ` K ) )
58 simp22l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R e. A )
59 2 3 5 hlatlej1
 |-  ( ( K e. HL /\ ( G ` S ) e. A /\ X e. A ) -> ( G ` S ) .<_ ( ( G ` S ) .\/ X ) )
60 17 28 41 59 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` S ) .<_ ( ( G ` S ) .\/ X ) )
61 1 2 3 4 5 6 7 8 9 10 11 12 13 14 cdlemeg46nlpq
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> -. ( G ` S ) .<_ ( P .\/ Q ) )
62 24 20 25 37 61 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. ( G ` S ) .<_ ( P .\/ Q ) )
63 nbrne1
 |-  ( ( ( G ` S ) .<_ ( ( G ` S ) .\/ X ) /\ -. ( G ` S ) .<_ ( P .\/ Q ) ) -> ( ( G ` S ) .\/ X ) =/= ( P .\/ Q ) )
64 60 62 63 syl2anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( G ` S ) .\/ X ) =/= ( P .\/ Q ) )
65 64 necomd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) =/= ( ( G ` S ) .\/ X ) )
66 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 cdlemeg46rgv
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R .<_ ( ( G ` S ) .\/ X ) )
67 1 5 atbase
 |-  ( R e. A -> R e. B )
68 58 67 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R e. B )
69 1 3 5 hlatjcl
 |-  ( ( K e. HL /\ P e. A /\ Q e. A ) -> ( P .\/ Q ) e. B )
70 17 18 19 69 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( P .\/ Q ) e. B )
71 1 3 5 hlatjcl
 |-  ( ( K e. HL /\ ( G ` S ) e. A /\ X e. A ) -> ( ( G ` S ) .\/ X ) e. B )
72 17 28 41 71 syl3anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( G ` S ) .\/ X ) e. B )
73 1 2 4 latlem12
 |-  ( ( K e. Lat /\ ( R e. B /\ ( P .\/ Q ) e. B /\ ( ( G ` S ) .\/ X ) e. B ) ) -> ( ( R .<_ ( P .\/ Q ) /\ R .<_ ( ( G ` S ) .\/ X ) ) <-> R .<_ ( ( P .\/ Q ) ./\ ( ( G ` S ) .\/ X ) ) ) )
74 42 68 70 72 73 syl13anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( R .<_ ( P .\/ Q ) /\ R .<_ ( ( G ` S ) .\/ X ) ) <-> R .<_ ( ( P .\/ Q ) ./\ ( ( G ` S ) .\/ X ) ) ) )
75 34 66 74 mpbi2and
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R .<_ ( ( P .\/ Q ) ./\ ( ( G ` S ) .\/ X ) ) )
76 2 4 5 21 2llnmeqat
 |-  ( ( K e. HL /\ ( ( P .\/ Q ) e. ( LLines ` K ) /\ ( ( G ` S ) .\/ X ) e. ( LLines ` K ) /\ R e. A ) /\ ( ( P .\/ Q ) =/= ( ( G ` S ) .\/ X ) /\ R .<_ ( ( P .\/ Q ) ./\ ( ( G ` S ) .\/ X ) ) ) ) -> R = ( ( P .\/ Q ) ./\ ( ( G ` S ) .\/ X ) ) )
77 17 23 57 58 65 75 76 syl132anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R = ( ( P .\/ Q ) ./\ ( ( G ` S ) .\/ X ) ) )