Metamath Proof Explorer


Theorem cdlemeg46rjgN

Description: NOT NEEDED? TODO FIX COMMENT. r \/ g(s) = r \/ v_2 p. 115 last line. (Contributed by NM, 2-Apr-2013) (New usage is discouraged.)

Ref Expression
Hypotheses cdlemef46g.b
|- B = ( Base ` K )
cdlemef46g.l
|- .<_ = ( le ` K )
cdlemef46g.j
|- .\/ = ( join ` K )
cdlemef46g.m
|- ./\ = ( meet ` K )
cdlemef46g.a
|- A = ( Atoms ` K )
cdlemef46g.h
|- H = ( LHyp ` K )
cdlemef46g.u
|- U = ( ( P .\/ Q ) ./\ W )
cdlemef46g.d
|- D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
cdlemefs46g.e
|- E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
cdlemef46g.f
|- F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
cdlemef46.v
|- V = ( ( Q .\/ P ) ./\ W )
cdlemef46.n
|- N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )
cdlemefs46.o
|- O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) )
cdlemef46.g
|- G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) )
cdlemeg46.y
|- Y = ( ( R .\/ ( G ` S ) ) ./\ W )
Assertion cdlemeg46rjgN
|- ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( G ` S ) ) = ( R .\/ Y ) )

Proof

Step Hyp Ref Expression
1 cdlemef46g.b
 |-  B = ( Base ` K )
2 cdlemef46g.l
 |-  .<_ = ( le ` K )
3 cdlemef46g.j
 |-  .\/ = ( join ` K )
4 cdlemef46g.m
 |-  ./\ = ( meet ` K )
5 cdlemef46g.a
 |-  A = ( Atoms ` K )
6 cdlemef46g.h
 |-  H = ( LHyp ` K )
7 cdlemef46g.u
 |-  U = ( ( P .\/ Q ) ./\ W )
8 cdlemef46g.d
 |-  D = ( ( t .\/ U ) ./\ ( Q .\/ ( ( P .\/ t ) ./\ W ) ) )
9 cdlemefs46g.e
 |-  E = ( ( P .\/ Q ) ./\ ( D .\/ ( ( s .\/ t ) ./\ W ) ) )
10 cdlemef46g.f
 |-  F = ( x e. B |-> if ( ( P =/= Q /\ -. x .<_ W ) , ( iota_ z e. B A. s e. A ( ( -. s .<_ W /\ ( s .\/ ( x ./\ W ) ) = x ) -> z = ( if ( s .<_ ( P .\/ Q ) , ( iota_ y e. B A. t e. A ( ( -. t .<_ W /\ -. t .<_ ( P .\/ Q ) ) -> y = E ) ) , [_ s / t ]_ D ) .\/ ( x ./\ W ) ) ) ) , x ) )
11 cdlemef46.v
 |-  V = ( ( Q .\/ P ) ./\ W )
12 cdlemef46.n
 |-  N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )
13 cdlemefs46.o
 |-  O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) )
14 cdlemef46.g
 |-  G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) )
15 cdlemeg46.y
 |-  Y = ( ( R .\/ ( G ` S ) ) ./\ W )
16 eqid
 |-  ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) = ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) )
17 eqid
 |-  ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) = ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) )
18 eqid
 |-  ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) = ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) )
19 eqid
 |-  ( ( Q .\/ P ) ./\ ( ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) .\/ ( ( ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) .\/ ( ( ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) .\/ S ) ./\ W ) ) )
20 eqid
 |-  ( ( ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) .\/ U ) ./\ ( Q .\/ ( ( P .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) ) = ( ( ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) .\/ U ) ./\ ( Q .\/ ( ( P .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) )
21 eqid
 |-  ( ( ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) .\/ S ) ./\ W ) = ( ( ( ( P .\/ Q ) ./\ ( ( ( S .\/ U ) ./\ ( Q .\/ ( ( P .\/ S ) ./\ W ) ) ) .\/ ( ( R .\/ S ) ./\ W ) ) ) .\/ S ) ./\ W )
22 eqid
 |-  ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) = ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W )
23 1 2 3 4 5 6 7 11 16 17 18 19 20 21 22 cdleme43cN
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) = ( R .\/ ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) )
24 23 3adant3l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) = ( R .\/ ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) )
25 simp1
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )
26 simp21
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= Q )
27 simp23
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) )
28 simp3r
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) )
29 1 2 3 4 5 6 11 12 13 14 cdlemeg47b
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( G ` S ) = [_ S / v ]_ N )
30 25 26 27 28 29 syl121anc
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` S ) = [_ S / v ]_ N )
31 simp23l
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S e. A )
32 12 18 cdleme31sc
 |-  ( S e. A -> [_ S / v ]_ N = ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) )
33 31 32 syl
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> [_ S / v ]_ N = ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) )
34 30 33 eqtrd
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` S ) = ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) )
35 34 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( G ` S ) ) = ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) )
36 35 oveq1d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( R .\/ ( G ` S ) ) ./\ W ) = ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) )
37 15 36 syl5eq
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> Y = ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) )
38 37 oveq2d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ Y ) = ( R .\/ ( ( R .\/ ( ( S .\/ V ) ./\ ( P .\/ ( ( Q .\/ S ) ./\ W ) ) ) ) ./\ W ) ) )
39 24 35 38 3eqtr4d
 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( R .\/ ( G ` S ) ) = ( R .\/ Y ) )