| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							cdlemef47.b | 
							 |-  B = ( Base ` K )  | 
						
						
							| 2 | 
							
								
							 | 
							cdlemef47.l | 
							 |-  .<_ = ( le ` K )  | 
						
						
							| 3 | 
							
								
							 | 
							cdlemef47.j | 
							 |-  .\/ = ( join ` K )  | 
						
						
							| 4 | 
							
								
							 | 
							cdlemef47.m | 
							 |-  ./\ = ( meet ` K )  | 
						
						
							| 5 | 
							
								
							 | 
							cdlemef47.a | 
							 |-  A = ( Atoms ` K )  | 
						
						
							| 6 | 
							
								
							 | 
							cdlemef47.h | 
							 |-  H = ( LHyp ` K )  | 
						
						
							| 7 | 
							
								
							 | 
							cdlemef47.v | 
							 |-  V = ( ( Q .\/ P ) ./\ W )  | 
						
						
							| 8 | 
							
								
							 | 
							cdlemef47.n | 
							 |-  N = ( ( v .\/ V ) ./\ ( P .\/ ( ( Q .\/ v ) ./\ W ) ) )  | 
						
						
							| 9 | 
							
								
							 | 
							cdlemefs47.o | 
							 |-  O = ( ( Q .\/ P ) ./\ ( N .\/ ( ( u .\/ v ) ./\ W ) ) )  | 
						
						
							| 10 | 
							
								
							 | 
							cdlemef47.g | 
							 |-  G = ( a e. B |-> if ( ( Q =/= P /\ -. a .<_ W ) , ( iota_ c e. B A. u e. A ( ( -. u .<_ W /\ ( u .\/ ( a ./\ W ) ) = a ) -> c = ( if ( u .<_ ( Q .\/ P ) , ( iota_ b e. B A. v e. A ( ( -. v .<_ W /\ -. v .<_ ( Q .\/ P ) ) -> b = O ) ) , [_ u / v ]_ N ) .\/ ( a ./\ W ) ) ) ) , a ) )  | 
						
						
							| 11 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							cdlemeg47rv | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` R ) = [_ R / u ]_ [_ S / v ]_ O )  | 
						
						
							| 12 | 
							
								
							 | 
							simp22l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R e. A )  | 
						
						
							| 13 | 
							
								
							 | 
							nfcvd | 
							 |-  ( R e. A -> F/_ u ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 14 | 
							
								
							 | 
							oveq1 | 
							 |-  ( u = R -> ( u .\/ S ) = ( R .\/ S ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq1d | 
							 |-  ( u = R -> ( ( u .\/ S ) ./\ W ) = ( ( R .\/ S ) ./\ W ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							oveq2d | 
							 |-  ( u = R -> ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) = ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							oveq2d | 
							 |-  ( u = R -> ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 18 | 
							
								13 17
							 | 
							csbiegf | 
							 |-  ( R e. A -> [_ R / u ]_ ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 19 | 
							
								12 18
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> [_ R / u ]_ ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 20 | 
							
								
							 | 
							simp23l | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S e. A )  | 
						
						
							| 21 | 
							
								
							 | 
							eqid | 
							 |-  ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) )  | 
						
						
							| 22 | 
							
								9 21
							 | 
							cdleme31se2 | 
							 |-  ( S e. A -> [_ S / v ]_ O = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 23 | 
							
								20 22
							 | 
							syl | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> [_ S / v ]_ O = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 24 | 
							
								23
							 | 
							csbeq2dv | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> [_ R / u ]_ [_ S / v ]_ O = [_ R / u ]_ ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( u .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							simp1 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) )  | 
						
						
							| 26 | 
							
								
							 | 
							simp21 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> P =/= Q )  | 
						
						
							| 27 | 
							
								
							 | 
							simp23 | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( S e. A /\ -. S .<_ W ) )  | 
						
						
							| 28 | 
							
								
							 | 
							simp3r | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> -. S .<_ ( P .\/ Q ) )  | 
						
						
							| 29 | 
							
								1 2 3 4 5 6 7 8 9 10
							 | 
							cdlemeg47b | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( S e. A /\ -. S .<_ W ) ) /\ -. S .<_ ( P .\/ Q ) ) -> ( G ` S ) = [_ S / v ]_ N )  | 
						
						
							| 30 | 
							
								25 26 27 28 29
							 | 
							syl121anc | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` S ) = [_ S / v ]_ N )  | 
						
						
							| 31 | 
							
								30
							 | 
							oveq1d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( G ` S ) .\/ ( ( R .\/ S ) ./\ W ) ) = ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) )  | 
						
						
							| 32 | 
							
								31
							 | 
							oveq2d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( ( Q .\/ P ) ./\ ( ( G ` S ) .\/ ( ( R .\/ S ) ./\ W ) ) ) = ( ( Q .\/ P ) ./\ ( [_ S / v ]_ N .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 33 | 
							
								19 24 32
							 | 
							3eqtr4d | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> [_ R / u ]_ [_ S / v ]_ O = ( ( Q .\/ P ) ./\ ( ( G ` S ) .\/ ( ( R .\/ S ) ./\ W ) ) ) )  | 
						
						
							| 34 | 
							
								11 33
							 | 
							eqtrd | 
							 |-  ( ( ( ( K e. HL /\ W e. H ) /\ ( P e. A /\ -. P .<_ W ) /\ ( Q e. A /\ -. Q .<_ W ) ) /\ ( P =/= Q /\ ( R e. A /\ -. R .<_ W ) /\ ( S e. A /\ -. S .<_ W ) ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> ( G ` R ) = ( ( Q .\/ P ) ./\ ( ( G ` S ) .\/ ( ( R .\/ S ) ./\ W ) ) ) )  |