Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | cdlemesner.l | |- .<_ = ( le ` K ) |
|
cdlemesner.j | |- .\/ = ( join ` K ) |
||
cdlemesner.a | |- A = ( Atoms ` K ) |
||
cdlemesner.h | |- H = ( LHyp ` K ) |
||
Assertion | cdlemesner | |- ( ( K e. HL /\ ( R e. A /\ S e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S =/= R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemesner.l | |- .<_ = ( le ` K ) |
|
2 | cdlemesner.j | |- .\/ = ( join ` K ) |
|
3 | cdlemesner.a | |- A = ( Atoms ` K ) |
|
4 | cdlemesner.h | |- H = ( LHyp ` K ) |
|
5 | nbrne2 | |- ( ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) -> R =/= S ) |
|
6 | 5 | 3ad2ant3 | |- ( ( K e. HL /\ ( R e. A /\ S e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R =/= S ) |
7 | 6 | necomd | |- ( ( K e. HL /\ ( R e. A /\ S e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S =/= R ) |