Metamath Proof Explorer


Theorem cdlemesner

Description: Part of proof of Lemma E in Crawley p. 113. Utility lemma. (Contributed by NM, 13-Nov-2012)

Ref Expression
Hypotheses cdlemesner.l
|- .<_ = ( le ` K )
cdlemesner.j
|- .\/ = ( join ` K )
cdlemesner.a
|- A = ( Atoms ` K )
cdlemesner.h
|- H = ( LHyp ` K )
Assertion cdlemesner
|- ( ( K e. HL /\ ( R e. A /\ S e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S =/= R )

Proof

Step Hyp Ref Expression
1 cdlemesner.l
 |-  .<_ = ( le ` K )
2 cdlemesner.j
 |-  .\/ = ( join ` K )
3 cdlemesner.a
 |-  A = ( Atoms ` K )
4 cdlemesner.h
 |-  H = ( LHyp ` K )
5 nbrne2
 |-  ( ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) -> R =/= S )
6 5 3ad2ant3
 |-  ( ( K e. HL /\ ( R e. A /\ S e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> R =/= S )
7 6 necomd
 |-  ( ( K e. HL /\ ( R e. A /\ S e. A ) /\ ( R .<_ ( P .\/ Q ) /\ -. S .<_ ( P .\/ Q ) ) ) -> S =/= R )