| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cdlemftr0.b |
|- B = ( Base ` K ) |
| 2 |
|
cdlemftr0.h |
|- H = ( LHyp ` K ) |
| 3 |
|
cdlemftr0.t |
|- T = ( ( LTrn ` K ) ` W ) |
| 4 |
|
eqid |
|- ( ( trL ` K ) ` W ) = ( ( trL ` K ) ` W ) |
| 5 |
1 2 3 4
|
cdlemftr1 |
|- ( ( K e. HL /\ W e. H ) -> E. f e. T ( f =/= ( _I |` B ) /\ ( ( ( trL ` K ) ` W ) ` f ) =/= _I ) ) |
| 6 |
|
simpl |
|- ( ( f =/= ( _I |` B ) /\ ( ( ( trL ` K ) ` W ) ` f ) =/= _I ) -> f =/= ( _I |` B ) ) |
| 7 |
6
|
reximi |
|- ( E. f e. T ( f =/= ( _I |` B ) /\ ( ( ( trL ` K ) ` W ) ` f ) =/= _I ) -> E. f e. T f =/= ( _I |` B ) ) |
| 8 |
5 7
|
syl |
|- ( ( K e. HL /\ W e. H ) -> E. f e. T f =/= ( _I |` B ) ) |